Expression of HK2 Gene is Deregulated in Prostate Cancer

Anna Viktorovna Kudryavtseva1,2, Kirill Mikhailovich Nyushko2, Andrew Rostislavovich Zaretsky3,4, Dmitriy Alekseevich Shagin3, George Sergeevich Krasnov1, Elena Anatolyevna Pudova1, Boris Yakovlevich Alekseev2, Anastasiya Vladimirovna Snezhkina1

1Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia, 2Department of Pathology, National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia, 3Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia, 4Evrogen Lab LLC, Moscow, Russia

Abstract

Aim: Prostate cancer (PC) is the second most common cancer in men. Therefore, the search for genes that could be potential targets for therapy as well as diagnostic and prognostic markers is an important task.

Materials and Methods: In this work, the expression of genes encoding the enzymes of the first stage of glycolysis, hexokinases (HK1, HK2, and HK3), was analyzed by quantitative polymerase chain reaction (qPCR).

Results: In 35% of PC samples, up to 7-fold increase was revealed in the expression of the HK2 gene, whereas in 15% of cases, up to 5-fold decrease was observed. The HK1 mRNA level was unchanged in most of the examined samples. The HK3 expression was very low and could not be detected by qPCR.

Conclusion: Thus, obtained results indicate that the activation of glycolysis in PC is likely caused by the HK2 upregulation. The increased mRNA level of HK2 gene could be a marker of this process in PC.

Key words: Gene expression, glycolysis, hexokinases, prostate cancer, qPCR

INTRODUCTION

Prostate cancer (PC) is one of the most commonly diagnosed malignancies in men. In developed countries, about 150,000 people with PC die every year. If PC is diagnosed in time, a 5-year survival rate of patients is quite high (>90%), as there are a wide range of treatment options for early-stage PC. Recent research considers that PC is primarily driven by genetic and molecular alterations. Thus, molecular basis of PC is extensively studied worldwide.[1,2]

Carcinogenesis is a complex multifactor process that is characterized by alterations in metabolic and signaling pathways. One of the universal characteristics of malignant tumors is a disturbed energy metabolism.[3-5] There is a shift from mitochondrial phosphorylation to glycolysis even in the presence of oxygen (Warburg effect).[6] As a consequence of the Warburg effect, cancer cells secrete large amounts of lactate to the extracellular microenvironment, which breaks down the collagen matrix, and causes the connections between cells to be lost. This is one of the mechanisms of cancer metastasis.[7-9]

The causes and mechanisms of glycolysis activation in tumor cells are still not fully understood.[10,11] It has been shown that some glycolytic genes were characterized by the tumor-specific activation or inactivation and are involved in carcinogenesis.[8,11-13]

Hexokinases catalyze the first step of glycolysis, in which a molecule of glucose is phosphorylated to glucose-6-phosphate. These important enzymes are encoded by four genes, HK1, HK2, HK3, and HK4 (glucokinase [GCK]). GCK is mainly expressed in liver and pancreatic beta
cells. Hexokinases HK1, HK2, and HK3 are constitutively expressed in all human tissues. Despite the fact that these hexokinases are characterized by a high affinity for glucose and have many common biochemical properties, it has been shown the involvement of HKs in carcinogenesis.\[14,15\] HK2 is associated with the voltage-dependent anionic channel on the outer mitochondrial membrane and is involved in the inhibition of apoptosis.\[4\]

In this work, we have analyzed the expression of HK1, HK2, and HK3 genes in PC using quantitative polymerase chain reaction (qPCR). The deregulation of HK2 gene expression was detected. Obtained results will help clarify molecular mechanisms of PC and provide an area for further investigations.

MATERIALS AND METHODS

Tissue samples

A total of 59 samples of PC (II-III stages) and adjacent morphologically normal tissues (conventional “normal” tissues) were collected after surgical resection. Each sample was frozen and placed in liquid nitrogen immediately after surgery. Most of the specimens were obtained from patients with locally advanced PC, who had not received neoadjuvant chemotherapy. All patients had an elevated level of prostate-specific antigen (PSA) and lymphogenous dissemination. The Gleason score was reported as 3 + 3 = 6, 3 + 4 = 7, and 4 + 3 = 7. Tumor samples were characterized according to the International System of Classification of Tumors, based on the tumor-node-metastasis and staging classification of the Union for International Cancer Control (UICC, Version 2009). Only samples with 70% or more tumor cells were studied. The study was approved by the Ethics Committee of Herzen Moscow Cancer Research Institute, the Ministry of Health of The Russian Federation. The study was done in accordance with the principles outlined in the Declaration of Helsinki (1964).\[16\]

Nucleic acid isolation and reverse transcription

Total RNA was isolated from tumor and conventional “normal” tissues by MagNA Pure Compact RNA Isolation Kit (Roche, Switzerland) using MagNA Pure Compact Instrument (Roche, Switzerland) according to the manufacturer’s instructions. Purified RNA was quantified using Qubit 2.0 (Invitrogen, USA). RNA quality was measured with the RIN method (RNA Integrity Number) on Agilent RNA Bioanalyzer 2100 (Agilent Technologies, USA). cDNA synthesis was done using M-MLV Reverse Transcriptase (Thermo Fisher Scientific, USA) and random hexamers according to the standard manufacturer’s protocol.

qPCR

qPCR was performed with Applied Biosystems commercial primer-probe sets for target genes (HK1: Hs00175976_m1, HK2: Hs00606086_m1, and HK3: Hs01092850_m1) and reference ones (RPN1: Hs01092850_m1 and GUSB: Hs00939627_m1) using Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific, USA).\[17,18\] Each reaction was repeated three times. qPCR procedure was performed as described.\[19\]

qPCR data were analyzed using the relative quantification (\(\Delta\Delta C_t\)) method.\[20,21\] Relative mRNA level of the genes was calculated using ATG program compatible with relative quantification software (Thermo Fisher Scientific, USA).\[22\] At least 2-fold mRNA level changes were considered as significant.

Nonparametric Wilcoxon test was used to compare mRNA expression differences of target and reference genes in PC samples. Spearman’s rank correlation analysis was used to check the dependence between target gene expression levels. \(P < 0.05\) was considered statistically significant.

RESULTS

We found an increase (from 2 to 7-fold) of HK2 mRNA level in 35% (21 of 59, \(P < 0.05\)) of PC samples [Figure 1]. Up to 5-fold downregulation of HK2 expression was observed in 15% (9 of 59) of the cases. The mean value of relative mRNA level was 2.5.

The HK1 mRNA level was not changed in most (85%, 51 of 59) of the PC samples. A decrease in HK1 expression (from 2 to 7-fold) was detected in 15% (9 of 59) of examined samples. The mean value of relative mRNA level was 1.9.

The mRNA level of HK3 gene was very low and could not be detected by qPCR method.

We found no significant correlation between expression levels of HK1 and HK2. The Spearman’s correlation coefficient was \(r_s = 0.04\).
DISCUSSION

The increase of HK2 gene expression is consistent with the results obtained by other scientists, which have shown elevated protein and mRNA levels of HK2 in PC. However, there have been no studies on quantitative estimation of the mRNA level of the HK2 gene in the tumor tissues compared with conventional “normal” ones. Moreover, the comparison of HK2 expression at mRNA and protein levels has also not been studied.

Interestingly, the increase in the HK2 expression may correlate with the total PSA level. In several clinical studies, the combination of HK2 expression and PSA level values (4-10 ng/ml) was shown as an important diagnostic and prognostic marker of PC.

On xenograft models of PC (mice), the mechanisms of an increase in the HK2 expression were studied. A selective positive regulation of HK2 through combination of Pten and p53 protein inhibition was shown in PC. Deletions of Pten gene stimulate an increase of HK2 gene expression via activation of AKT-mTORC1-4EBP1 pathways. The loss of p53 functionality mediates the stable mRNA level of HK2 by inhibiting the biogenesis of miR143. Thus, HK2-mediated aerobic glycolysis (Warburg effect) is associated with the loss of Pten-/p53 activity. Verification of the hypothesis could provide an opportunity to select a particular targeted treatment, based on inhibition of HK2 through Pten-/p53 proteins, for some patients. Currently, potential drugs that are inhibitors of HK2 are known. The most famous of these is 3-bromopyruvate, which inhibits HK2-mediated cell death by activating the mitochondrial route of apoptosis or necrosis. Thus, the obtained data allow us to suggest HK2 as a potential marker for diagnosis and a target for therapy of PC.

CONCLUSIONS

We showed a significant increase in the expression of HK2 gene in PC. The obtained results indicate that HK2 might be involved in the alterations of energy metabolism in PC. Further investigation is required to determine a possibility of application of HK2 expression level as a marker of PC.

ACKNOWLEDGMENTS

The authors thank the National Medical Research Radiological Center for the collection and characterization of PC samples, Evrogen Lab LLC for carrying out the RNA isolation, and Engelhardt Institute of Molecular Biology for the opportunity to perform qPCR experiments using the equipment of EIMB RAS “Genome” center (http://www.eimb.ru/rus/ckp/ccu_genome_c.php).

This work was financially supported by the Russian Science Foundation grant no. 14-35-00105.

REFERENCES

3. Sawayama H, Ishimoto T, Sugihara H, Miyanari N, Miyamoto Y, Baba Y, et al. Clinical impact of the HK2 lyceraldehyde-3-phosphate dehydrogenase gene in PC. The obtained results indicate that HK2 might be involved in the alterations of energy metabolism in PC. Further investigation is required to determine a possibility of application of HK2 expression level as a marker of PC.

Source of Support: Nil. Conflict of Interest: None declared.