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Abstract

Introduction: To enhance the delivery of poorly-soluble drugs, we have explored aquasomes (three-layered, 
ceramic core based, and oligosaccharide-coated nanoparticles) as potential carriers for the delivery of model 
hydrophobic drug lornoxicam (log P = 3.15). Materials and Methods: Ceramic nanoparticles were prepared using 
coprecipitation by sonication method. Cellobiose was used for coating onto ceramic core followed by loading of the 
lornoxicam by partial adsorption mechanism. The prepared system was characterized for size, shape, drug loading 
efficiency, and in vitro release profile (both 0.1 N hydrochloric acid solution and phosphate buffer solution, pH 6.8). 
Colorimetric analysis of sugar coating was done using phenol sulfuric acid method. Results and Discussion: The 
formed particles were spherical with an average particle size in the range of 60-300 nm, with a media of 87 nm. 
The in vitro dissolution performance was compared with that of pure drug and better results were observed. The 
cumulative lornoxicam release for the aquasome formulation (49%) was found to be higher than that of pure drug 
(34%) and was found to be gradual and linear in acidic media. Whereas, in phosphate buffer solution, pH 6.8, an 
incomplete release was observed with the pure drug (51% in 2 h) and 95% release was observed within 90 min 
from the formulation. Conclusion: Ceramic nanoparticles can be used for the enhancement of dissolution profile 
of poorly soluble drugs.
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INTRODUCTION

Particulate drug carriers have a variety 
of advantages for use in drug delivery. 
They have large surface area to volume 

ratios that allow for a high drug payload and a 
prolonged drug release profile and can deliver 
drugs through minimally invasive routes 
identical to their polymeric counterparts. With 
the advent of nanotechnology, ceramic materials 
are now showing much promise for numerous 
drug delivery applications, especially as 
particulate drug carriers. Indeed, researchers are 
realizing that the extraordinary characteristics 
of nanophase ceramics (including size, 
structural advantages, highly active surfaces, 
unique physical and chemical properties, and 
ease of modification) imply that they can be 
excellent platforms for the drug transportation 
and controlled prolonged release compared 
with polymeric platforms.[1]

Calcium phosphate (CAP) owing to its natural 
presence in the bones and teeth, has been 
considered as ideal biomaterial with excellent 

biocompatibility[2] and has been extensively used in many 
biomedical applications such as dental composites,[3] bone 
tissue engineering or bone graft substitution (scaffolds),[4-7] 
orthopedic implants,[8,9] coatings,[10] and antibacterial 
agents.[11] Recently, more efforts have been made to explore 
the potential of using CAP nanoparticles as vehicles for 
drug and gene delivery for their great affinity to DNA and 
various drugs and good release property.[12-16] Ceramics were 
also investigated for the adsorption of proteins,[17] delivery 
of hemoglobin,[18] insulin,[19] enzymes,[20,21] antigens,[22,23] and 
vaccines.[24,25]

Different strategies were tested to fortify the characteristics 
of ceramics.[26,27] A myriad of methods has been reported 
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to prepare nanostructured CAP, and various morphologies 
including nanoparticles, plate-like nanocrystals, nanoneedles, 
nanotubes, and nanoblades.[28]

Solubility is one of the important parameter to achieve 
the desired concentration of drug in systemic circulation 
for pharmacological response to be shown. Increasing the 
bioavailability of poorly soluble drugs is one of the biggest 
challenges faced by formulation scientists. Nowadays, 
many of the new drugs exhibit such a low solubility 
that micronization does not lead to a sufficiently high 
bioavailability, and so the next step was going down to the 
Nanolevel, may be necessary.[29,30]

A polymer-free system, proposed by Kossovsky et al. 
containing carbohydrate stabilized nanoparticles of ceramics 
known as aquasomes,[31-33] has been explored as a potential 
application for the delivery of poorly soluble drugs. 
Aquasomes consists of a ceramic nanocrystalline core whose 
surface is non-covalently modified with the polyhydroxy 
oligomer to obtain a sugar ball, which is then adsorbed 
with therapeutically active molecules with or without 
modification.[34] The polyhydroxyl compounds coated to 
the core impart a hydrophilic nature to aquasomes. These 
three-layered structures are fabricated by self-assembly 
principle, the bottom-up approach[35,36] for the preparation of 
nanoparticles.

The objective of the present study was formulation and 
evaluation of nanoparticles in the form of aquasomes 
loaded with lornoxicam (log P=1.8), a model drug of 
low aqueous solubility belonging to BCS Class II. The 
prepared nanoparticles were then characterized with 
respect to shape, size, pay load, and in vitro drug release 
profile.

MATERIALS AND METHODS

Materials

Lornoxicam was obtained as a gift sample from Aristo 
Pharmaceuticals Pvt. Ltd. (Hyderabad, India). Calcium 
chloride was obtained from SD Fine-Chem Ltd. (Mumbai, 
India). Disodium hydrogen phosphate was obtained from 
Qualigens Fine Chemicals (Mumbai, India). Lactose 
monohydrate was obtained from SD Fine-Chem Ltd. 
(Mumbai, India). Cellobiose was obtained from Sisco 
Research Laboratories Pvt. Ltd. (Hyderabad, India).

Methods

Preparation of aquasomes

These three-layered structures are prepared by a three-step 
procedure, consisting of an inorganic core formation, which 
will be coated with sugar forming the polyhydroxylated core 

that will be finally loaded with lornoxicam, a poorly soluble 
drug.

Preparation of ceramic core

The cores were fabricated by a procedure as proposed by 
Kossovsky et al. by the reaction of disodium hydrogen 
phosphate with calcium chloride to yield the colloidal 
precipitate[19,37,38] with little modification. Based on the 
reaction stoichiometry, equivalent moles were reacted 
in a reaction volume of 120 ml specifically, disodium 
hydrogen phosphate (1 mole = 8.90 g) and calcium chloride 
(1 mole = 7.35 g) were taken in 60 ml of water each separately 
and mixed. A bath sonicator was used for sonication of 
the mixture for 2 h at 4°C. Following sonication, it was 
centrifuged using a C-24 Remi centrifuge (4°C, 15000 rpm) 
for 1 h. After centrifugation, supernatant was decanted; the 
precipitate was washed 3 times with double-distilled water. 
The precipitate was resuspended in distilled water (50 ml) 
and then filtered through a membrane filter (pore size 0.22 µ) 
of nitrocellulose. The core was dried (100°C, 2 days) to get 
ceramic nanoparticles. After drying, the percentage yield was 
calculated. The chemical reaction involved is as follows,

		  Sonication

3Na2 HPO4 + 3CaCl2→ Ca3 (PO4)2+ 6 NaCl + H3PO4

		  2 h, 4°C

Sugar coating on the ceramic core particles

The core particles (prepared as above) were coated with 
polyhydroxy oligomer by adsorption method using sonication, 
a modified method adopted from Patil et al.[39] About 300 mg 
of sugar (cellobiose) was weighed and dissolved in 100 ml of 
double-distilled water. In a separate beaker, 150 mg ceramic 
core was taken and 100 ml of sugar solution was added (1:2, 
core:sugar coat) and sonicated for variable time periods; 
10, 20, 30, and 40 min using Bandelin Sonoplus HD 2070 
probe sonicator (at 30% pulse and 18 W). This suspension 
was shaken in an orbital shaker incubator for 3 h (at 100 rpm 
and 25°C). Here, acetone (non-solvent, 1 ml) was added 
to the suspension and kept aside for some time. Then, the 
solution was centrifuged (2000 rpm, 25°C and 15 min). The 
supernatant was decanted off, and the sugar-coated core was 
washed twice with water and dried at 70°C in a hot air oven. 
Cellobiose-coated core was quantified by a colorimetric 
reaction, phenol sulfuric acid method.

Quantification of sugar coating on core using phenol 
sulfuric acid method
A volume of 50 mg of sugar-coated core was accurately 
weighed and dissolved in 5 ml distilled water. From this 
stock, 2 ml of solution was taken and 5 ml ice cold sulfuric 
acid and 1 ml of phenol were added and boiled (10 min, 
1000°C). The solution was cooled rapidly and the absorbance 
was measured at λmax 490 nm.[40,41]
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Adsorption of drug on the cellobiose-coated 
ceramic core

The procedure was general and similar as reported earlier.[39] 
Drug solution of 0.5% w/v (phosphate buffer solution, pH 6.8, 
and few drops of 1 N NaOH) was added to volumetric flasks 
containing an accurately weighed amount of sugar-coated 
core. The flasks were stoppered and shaken vigorously in an 
orbital shaker incubator (130 rpm for 24 h at 25°C and 30°C). 
The suspension was centrifuged (15,000 rpm). Ceramic 
nanoparticles were filtered through 0.2 µ filter using vacuum 
pump and dried at 70°C for 24 h.

Evaluation of aquasomes

Fourier transform infrared (FTIR) analysis

For final aquasomes, FTIR spectroscopy was performed for 
the confirmation of the presence of all three components, that 
is, ceramic core, sugar coating on the ceramic core, and drug 
on the sugar-coated ceramic core.

Particle size analysis and morphology using 
scanning electron microscopy (SEM)

The average size and size distribution of lornoxicam-loaded 
ceramic nanoparticles was determined using zetasizer. 
Morphology and size were confirmed by SEM (Hitachi 
S-3000N) in which the samples were mounted rigidly on 
the surface of a bronze-specimen holder called a specimen 
stub using a double-sided adhesive tape and coated with an 
ultrathin coating of electrically-conducting material, gold, 
deposited on the sample either by low vacuum sputter coating 
or by high vacuum evaporation with gold and observed under 
suitable magnification.[42]

Determination of drug content on sugar-coated core

The payload (loading efficiency) of drug in the aquasome 
formulation was determined by transferring 10 mg of the 
formulated aquasomes to 10 ml cleaned and dried volumetric 
flask and the drug was allowed to dissolve in phosphate 
buffer solution, pH 6.8 containing few drops of 1 M NaOH 
and volume was made up to the mark. Then, the solution was 
transferred to 100 ml volumetric flask containing the media 
(0.05 N NaOH) and the particles were solubilized to get a 
clear solution. The absorbance of the solution was determined 
spectrophotometrically at respective λmax of 376 nm.[43]

In vitro drug release

In vitro drug release of the formulations was carried out 
using USP-type I dissolution apparatus (basket type) in two 
dissolution media (0.1 N hydrochloric acid solution and 
phosphate buffer solution, pH 6.8). The temperature of the 
medium was maintained at 37 ± 0.5°C. The apparatus was 
allowed to run for 50 rpm. Aliquots of 5 ml samples were 
withdrawn at various intervals. The samples were filtered 

through Whatman filter. The fresh dissolution medium 
(0.1 N hydrochloric acid solutions and phosphate buffer 
solution pH 6.8) was replaced every time with the same 
quantity of the sample. Collected samples were analyzed 
spectrophotometrically at λmax of the drug. The percentage 
cumulative drug release (%) was calculated.

Drug release kinetics

To study the release kinetics, data obtained from in vitro 
drug release studies were fitted in various kinetics models to 
understand the linear relationship, that is, kinetic principles. 
The data were processed for regression analysis using MS 
Excel statistical functions. To study the release mechanisms, 
the data of in vitro drug release was verified using Higuchi’s 
model and Hixson-Crowell Cube root law models.

RESULTS AND DISCUSSION

Effect of sonication time

The ceramic core to sugar ratio was kept constant (1:2) 
and the sonication time was varied (10, 20, 30, and 40 min), 
and the extent of sugar loading was determined using phenol 
sulfuric acid method and given in Table 1. In a hot acidic 
medium, glucose is dehydrated to hydroxymethylfurfural. 
This forms a yellow-brown colored product with phenol and 
has an absorption maximum at 490 nm. A study of Table 1 
specified that 30-min sonication time showed fairly high 
sugar adsorption. Sonication resulted in size reduction, which 
further leads to increased surface area available for the sugars 
to get adsorbed. With further increase in sonication time to 
40 min, though there was an increase in sugar loading, slight 
generation of heat was observed and there is a chance for 
aggregation of particles if they are sonicated for longer time.

Determination of lornoxicam content on 
cellobiose-coated ceramic core

The lornoxicam content on the cellobiose-coated ceramic core 
was determined by accurately weighing 10 mg of aquasomes 
and dissolving them in 10 ml of phosphate buffer solution, 

Table 1: Effect of sonication time on sugar loading 
onto ceramic core

Sonication 
time (min)

Cellobiose loading (µg/100 mg core)
AM±SD*

10 584.78±2.80

20 615.78±4.80

30 654.01±3.94

40 665.91±4.11
*Each value represents the mean of three determinations. 
SD: Standard deviation
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pH 6.8, and few drops of 1 M NaOH and finally making 
up the volume up to 100 ml with medium (0.05 N NaOH). 
This solution was analyzed spectrophotometrically and the 
absorbance was observed at the λmax (376 nm). Percentage 
drug loading was calculated and found to be 8.53%.

FTIR spectroscopic analysis

KBr pellets of lornoxicam cellobiose aquasomes (LCA) were 
prepared and the characteristic spectra were compared with 
literature values.[44,45] The FTIR spectra are shown in Figure 1 
and the characteristic bands were reported in Table 2.

FTIR spectroscopy confirmed the presence of three layered 
aquasomal structure, that is, ceramic core, sugar coating on 
the ceramic core, and drug on sugar-coated ceramic core.

Particle size analysis and morphology

The SEM images of lornoxicam-loaded aquasomes showed 
spherical nanoparticles. The particle size was uniform and 
particles were mostly single; however, a few aggregates 
were also visible [Figure 2]. The average particle size for 
LCA and the pure drug was determined using zetasizer 
[Figures 3 and 4; Table 3].

A perusal to Table 3 indicated that the lornoxicam-loaded 
aquasomes exhibited smaller particle size when compared to 
that of pure drug, which proves that the aquasomal fabrication 
had led to reduction of particle size to nanometer range.

In vitro drug release study

The in vitro drug release for lornoxicam from the formulation 
and pure drug was studied in 0.1 N hydrochloric acid solution. 

Table 2: Comparison of characteristic FTIR bands of 
LCA

Characteristic bands LCA, Observed 
values cm−1

Literature 
values, cm−1

Phosphate (P‑O) 896.97 845‑725

Phosphate (P=O) 1178.79 1300‑1240

OH stretching 3309.24 3200‑3600

CH2 stretching, 
asymmetrical

2921.56 2926

CH2 stretching, 
symmetrical

2879.12 2853

C=O bonding 1683.79 1630‑1690

NH bending 1650.85 1550‑1640

S=O bending 1301.54 1175‑1350

C‑Cl bending 750.96 600‑800
LCA: Lornoxicam cellobiose aquasomes, FTIR: Fourier transform 
infrared

Table 3: Average particle size of lornoxicam 
aquasomes and pure drug

Formulation Particle size (nm)*
LCA 87.2

Lornoxicam 1010.0
*Average particle size was determined for 100 particles. 
LCA: Lornoxicam cellobiose aquasomes

Table 4: Cumulative percentage release for 
lornoxicam from pure lornoxicam and LCA in 0.1 N 

hydrochloric acid solution
Time (min) % Cumulative lornoxicam release

Pure lornoxicam
AM±SD*

Lornoxicam 
cellobiose formulation

AM±SD*
0 0 0

5 11.42±6.42 8.10±3.13

10 20.94±4.20 12.32±3.14

20 31.44±6.66 21.84±1.06

30 32.48±3.68 31.90±1.11

40 34.86±4.63 38.09±1.29

50 32.72±2.59 41.86±0.78

60 33.02±0.00 44.79±1.13

70 32.58±1.22 46.87±0.96

80 35.58±3.83 48.85±1.31

90 34.54±2.46 49.11±4.45

100 34.60±1.95 49.37±2.73
*Each value represents a mean of three determinations. 
LCA: Lornoxicam cellobiose aquasomes, SD: Standard deviation

Figure 1: Fourier transform infrared spectra of lornoxicam 
cellobiose aquasomes

Figure 2: (a and b) Scanning electron microscopy images of 
lornoxicam cellobiose aquasomes

ba
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The data were shown in Table 4, and the comparative release 
profiles were recorded in Figure 5. A perusal to Table 4 and 
Figure 5 indicates that the drug release was slow and found 

to be incomplete for formulation as well as for the pure 
drug. The cumulative lornoxicam release for the aquasome 
formulation (49%) was found to be higher than that of pure 
drug (34%) and was found to be gradual and linear.

Whereas, in phosphate buffer solution, pH 6.8, an 
incomplete release was observed with pure drug 
(51% in 2 h) and 95% release was observed within 90 min 
from the formulation. The data were shown in Table 5, and 
the comparative release profiles were recorded in Figure 6. 
A perusal to Table 5 and Figure 6 indicates that drug 
release from the formulation was rapid and complete than 
the pure drug.

The release kinetics followed first-order uniformly for all the 
samples, that is, concentration-dependent kinetics, in both the 
media. The release mechanism was observed to be Higuchi 
diffusion controlled.

CONCLUSION

Ceramic nanoparticles are a technological innovation for the 
delivery of therapeutic agents specifically, poorly soluble 
drugs. Lornoxicam in the form of ceramic nanoparticles 
(aquasomes) showed better release profile than the pure drug. 
These aquasomes with their nanometric dimensions, low drug 
dose, and hydrophilic properties are a novel drug delivery 

Table 5: Cumulative percentage release for 
lornoxicam from pure lornoxicam and LCA in 

phosphate buffer solution, pH 6.8
Time (min) % Cumulative lornoxicam release

Pure lornoxicam*
AM±SD

Lornoxicam 
cellobiose 

formulation*
AM±SD

0 0 0

5 9.08±0.67 12.28±1.04

10 16.01±1.28 21.19±1.39

20 23.46±1.07 38.90±2.10

30 26.54±0.89 63.58±2.31

40 30.37±0.68 72.77±3.71

50 33.73±1.13 80.78±0.95

60 37.35±1.09 85.03±1.13

70 40.25±0.86 90.49±2.40

80 44.12±0.83 93.53±2.96

90 46.06±0.52 95.49±2.67

100 48.24±0.99

110 49.44±1.08

120 51.16±0.86
*Each value represents a mean of three determinations. 
LCA: Lornoxicam cellobiose aquasomes, SD: Standard deviation

Figure 3: Particle size distribution analysis of lornoxicam 
cellobiose aquasomes

Figure 4: Particle size distribution analysis of pure drug 
lornoxicam

Figure 5: In vitro lornoxicam release profile from the pure drug 
and aquasome formulation in 0.1 N hydrochloric acid solution

Figure 6: In vitro lornoxicam release profiles from pure drug 
and aquasome formulations in phosphate buffer solution, 
pH 6.8
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system that has the potential to enhance the dissolution of the 
less soluble drug.
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