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INTRODUCTION

Nanotechnology is the creation of useful materials, 
devices, and synthesis used to manipulate matter at 
an incredibly small scale between 1 and 100 nm.[1,2] 
Although “nanotechnology” has been an academic 
and media buzzword for several years, the federal 
government and private investors are now backing a 
host of initiatives with huge sums. Nanotechnology is 
the science and technology of precisely manipulating 
the structure of matter at the molecular level.

Most current anticancer agents do not greatly 
differentiate between cancerous and normal cells, 
leading to systemic toxicity and adverse effects. This 
greatly limits the maximum allowable dose of the 
drug. In addition, rapid elimination and widespread 
distribution into targeted organs and tissues requires 
the administration of a drug in large quantities, which 
is not economical and often results in undesirable 
toxicity. Several programs have supported research 
on novel nanodevices capable of detecting cancer 
at its premalignant stage, locating cancerous tissue 
within the body, delivering antineoplastic drugs to 
the cancer cells, and determining whether these cells 
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are being killed by the drugs. Nanocrystals and other 
nanoparticles have been receiving a lot of attention 
recently and their utilization in cancer therapeutics is 
becoming a growing industry. The recent Food and Drug 
Administration (FDA) approval of Abraxane (ABI-007), an 
albumin–taxol nanoparticle for the treatment of breast 
cancer, has opened the doors for the development of 
other nanoscale drug delivery devices with the aim of 
landing more of a drug onto the target tissue and less 
onto healthy tissues.[3] Here, we discuss the mechanism 
of nanoparticle drug delivery through passive and active 
pathways and the properties and biological utility of 
self-assembled nanoparticles in cancer therapeutics and 
promising directions for cancer research.

Physiologic and biologic characteristics of 
nanoparticles
In chemotherapy, pharmacologically active cancer 
drugs reach the tumor tissue with poor specificity 
and dose-limiting toxicity. Conventional drug delivery 
methods include oral and IV routes. There are 
several disadvantages to these methods, e.g. oral 
administration of tablets or capsules could result in 
disorderly pharmacokinetics due to the exposure of 
these agents to the metabolic pathways of the body. [4] 
This can result in larger than necessary doses being 
administered, which can further cause increased 
toxicity.[5] The traditional IV routes are often even more 
problematic. The specificity of some conventional IV 
drugs is low, resulting in harmful effects to healthy 
tissues. Nanoparticle drug delivery, using biodegradable 
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polymers, provides a more efficient, less harmful solution 
to overcome some of these problems. It was in 1975 that 
Ringdorf proposed a polymer–drug conjugate model that 
could enhance the delivery of an anticancer model.[6,7]

He proposed that the pharmacologic properties of a 
polymer–drug conjugate model could be manipulated 
by changing the physical and the chemical properties of 
the polymer. For example, an insoluble drug can be made 
water-soluble by introducing solubilizing moieties into 
the polymer, thereby improving its bioavailability and 
biodegradability. The delivery of the drug to the target tissue 
can be achieved primarily in two ways: passive and active.

NANOTECHNOLOGY IN CANCER THERAPY

Systemic delivery systems
Passive targeting
For systemic therapy, passive and active targeting strategies 
are utilized. Passive targeting relies on the properties 
of the delivery system and the disease pathology in 
order to preferentially accumulate the drug at the site of 
interest and avoid nonspecific distribution. Maeda and 
colleagues[8,9] first described the enhanced permeability 
and retention (EPR) effect in murine solid tumor models 
and this phenomenon has been confirmed. When polymer–
drug conjugates are administered, 10- to 100-fold higher 
concentrations can be achieved in the tumors due to 
EPR compared with the administration of free drug.[10,11] 
Other approaches for passive targeting involve the use 
of a specific stimuli-sensitive delivery system that can 
release the encapsulated payload only when such stimuli are 
present.[12-14] The physically encapsulated DNA in polyethylene 
glycol (PEG)-modified gelatin nanoparticles was found to be 
more effective in vitro and in vivo in transfection of reporter 
plasmid DNA expressing green fluorescent protein and 
b-galactosidase.[15-19]

Active targeting
Active targeting to the disease site relies on addition to PEG 
modification of nanocarriers to enhance circulation time 
and achieve passive targeting coupling of a specific ligand 
on the surface that will be recognized by the cells present at 
the disease site.[20,21] When the surface of the nanocarriers is 
modified with folic acid, they can be targeted to the tumor 
cells that overexpress folate receptors. Recently, Farokhzad 
et al.[22] have elegantly described the use of aptamers, nucleic 
acid constructs that specifically recognize prostate membrane 
antigen on prostate cancer cells. The aptamer technology 
provides an additional strategy for active targeting to tumor 
cells in the body using a monoclonal antibody, 2C5, which 
specifically recognizes antinuclear histones. Scientists have 
developed various strategies for active targeted delivery 
of drugs to the tumor mass using liposomes and micellar 
delivery systems.[23,24] Other groups have used transferrin, 
an iron-binding protein,[25] for surface modification of 
nanocarriers for delivery to tumors.[26] [Figure 1].

Intracellular delivery and subcellular localization
Once the nanocarriers are delivered to the specific diseased 
organ or tissue, they may need to enter the cells of interest 
and ferry the payload to subcellular organelles. In this case, 
nonspecific or specific cell penetrating strategies need 
to be adopted.[27] Recently, in order to enhance cellular 
uptake, a surge of research effort has been directed toward 
development of argenine-rich cell-penetrating peptides.[28]

Nanoparticle drugs
Nanotechnology is beginning to change the scale and 
methods of drug delivery. Therapeutic and diagnostic agents 
can be encapsulated, covalently attached, or adsorbed onto 
nanoparticles. These approaches can easily overcome drug 
solubility issues, which has significant implications because 
more than 40% of the active substances being identified 
through combinatorial screening programs are poorly soluble 
in water.[29] Conventional and most current formulations of 
such drugs are frequently plagued with problems such as poor 
and inconsistent bioavailability. The widely used attempt at 

Cancer statistics
Cancer type Estimated new 

cases
Estimated 

deaths
Bladder 67,160 13,750
Breast (female - male) 178,480 - 2,030 40,460 - 450
Colon and rectal (combined) 153,760 52,180
Endometrial 39,080 7,400
Kidney (renal cell) cancer 43,512 10,957
Leukemia (all) 44,240 21,790
Lung (including bronchus) 213,380 160,390
Melanoma 59,940 8,110
Non-Hodgkin lymphoma 63,190 18,660
Pancreatic 37,170 33,370
Prostate 218,890 27,050
Skin (nonmelanoma) >1,000,000 <2,000
Thyroid 33,550 1,530

Figure 1: Passive tumor-targeting ptencio flong circulation 
(e.g. poly(ethylene glycol)-modified nanoparticles to solid tumor 
upon systemic administration by exploiting the difference in the 
vasculature
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enhancing solubility is to generate a salt. For nonionizable 
compounds, micronization, soft-gel technology, cosolvents, 
surfactants, or complexing agents have been used.[30] For 
decades, researchers have been developing new anticancer 
agents and new formulations for delivering chemotherapy 
drugs.[31] Paclitaxel (TaxolTM) is one of the most widely used 
anticancer drugs in the clinic. It is a microtubule-stabilizing 
agent that promotes tubulin polymerization, disrupting cell 
division and leading to cell death.[32] Because it is poorly soluble 
in aqueous solution, the formulation available currently is 
Chremophor EL[33] (polyethoxylated castor oil) and ethanol. [34] 
In a new formulation approach used in AbraxaneTM,[35] 
recently approved by the FDA to treat metastatic breast cancer, 
paclitaxel was conjugated to albumin nanoparticles.[36] The 
formulation is very effective in circumventing side effects of 
the highly toxic Chremophor EL, which include hypersensitivity 
reactions, nephrotoxicity, and neurotoxicity.[33] Although the 
secreted protein, acidic, cysteine-rich, also called osteonectin, 
protein is believed to improve albumin drug uptake,[36] this 
nanoparticulate drug still exhibits significant side effects. 
Carrier design and targeting strategies may vary according to 
the type, developmental stage, and location of the cancer.[37]

EARLY CANCER DETECTION

Bioconjugated particles and devices are also under development 
for early cancer detection in body fluids such as blood and 
serum. These nanoscale devices operate on the principles 
of selectively capturing cancer cells or target proteins. The 
sensors are often coated with a cancer-specific antibody or 
other biorecognition ligands so that the capture of a cancer 
cell or target protein yields an electrical, mechanical, or optical 
signal for detection. Another promising area of research is the 
use of nanoparticles for detection and analysis of circulating 
tumor cells and biomarkers in blood/serum samples.[34] 
Vessella et al.[35] have demonstrated the ability to enrich for 
circulating cancer cells from both bone marrow aspirates and 
peripheral blood samples. Through the combinatorial use of 
magnetic nanoparticles and semiconductor quantum dots 
(QDs), it is possible to increase the ability to capture and 
evaluate these rare circulating cancer cells.

Nanobarcodes
Mirkin et al.[36] reported an innovative approach for both protein 
and nucleic acid detection based on biobarcode amplification. 
This approach uses both colloidal gold nanoparticles and 
magnetic microbeads, gold nanoparticles modified with both 
target capture strands and bar code strands that are subsequently 
hybridized to bar code DNA, and magnetic microparticles 
modified with target capture strands. In the presence of target 
DNA,[37] the gold nanoparticles and the magnetic microbeads 
form sandwich structures that are magnetically separated from 
the solution and are further washed to remove the unhybridized 
barcode DNA. The barcodes (hundreds to thousands per target) 
are detected by using a colorimetric method.

Nanowires
Nanowires are available in metallic, semiconductor, magnetic, 
oxide, and polymer compositions and are promising as 
ultrasmall chemical and biological sensors.[38,39] Functionalized 
nanowires are coated with capture ligands such as antibodies 
or oligonucleotides. In the presence of target molecules, 
the specific binding between target molecule and 
capture molecule generates an immediate conductivity 
change within the nanowire that can be measured. Hahm 
et al.[40] measured the achieved detection limit to be on the order 
of 10 femtomolar (10 × 10-15 M). They have also developed 
nanowire arrays for multiplexed cancer biomarker detection,[41] 
which consist of many individual nanowires, each coated with 
a distinct surface receptor.

Carbon nanotubes
Another type of nanodevice for biomarker detection is the 
carbon nanotubes (CNTs).[42] Use of single-walled CNTs as high-
resolution atomic force microscopy tips showed that specific 
sequences of kilo base size DNA can be selectively detected from 
single-base mismatch sequences.[43] This technique enabled the 
simple and direct detection of specific haplotypes that code 
for genetic disorders such as cancer. CNT-modified electrodes 
can amplify the electrochemical signal of guanine bases, which 
has been used by Wang et al.[44] for label-free electrochemical 
detection of DNA at nanomolar concentrations. More recent 
work has utilized CNTs coated with alkaline phosphatase as 
labels for amplified DNA and protein detection.[45]

Tumor-targeted specific ligands on long-circulating 
nanocarriers
To achieve better selective targeting by PEG-coated liposomes 
or other particulates, targeting ligands were attached to 
nanocarriers via the PEG spacer arm such that the ligand was 
extended outside of the dense PEG brush, excluding steric 
hindrances for its binding to the target receptors.[46,47]

Nanobiosensors and cancer
With the progress of biosensor technology, the range of 
applications expands. Numerous biosensor applications for 
cancer diagnostics are described. Nanobiosensor plays a very 
important role in cancer care. Bioconjugated particles[48] and 
devices are also under progress for early cancer detection in 
body fluids such as blood and serum. These nanoscale devices 
operate on the principles of selectively capturing cancer 
cells or target proteins. The sensors are often coated with a 
cancer-specific antibody or other biorecognition ligands so 
that the capture of a cancer cell or target protein yields an 
electrical, mechanical, or optical signal for detection.

CONCLUSION

Nanotechnology, although in its nascent stage, has a great 
potential to cure the cancer, with least side effects. It is the 
technology that will grow in years to come and, probably, 
the human race will have a 100% cure to cancer.
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