Fabrication of cefuroxime-impregnated calcium sulfate: Polycaprolactone composite implant for osteomyelitis

Himanshu Gupta, Anubhav Anand1, Rakesh Pundir1, C S Pandian1, Shubhini Saraf1

Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi - 110 062, 1Babu Banarasi Das National Institute of Technology and Management, Lucknow, India

Osteomyelitis is characterized as an inflammatory bone disease caused by pyrogenic bacteria. As oral bioavailabilities of antibiotics are low, a regimen of 6 weeks of intravenous antibiotic is necessary for adequate therapy. Although the dose of antibiotic administered systemically is high, therapeutically effective drug concentrations are not always achieved at the site of infection. This problem can be overcome by the use of local antibiotics from a biodegradable implant for chronic osteomyelitis that can deliver the drug at least for 6 weeks. The implant delivers high antibiotic concentration at tissue levels, obliterates dead space, aids bone repair and does not need to be removed. The aim of this study was to develop and evaluate a calcium sulfate and polycaprolactone (PCL)-based composite biodegradable implantable delivery system of cefuroxime for the localized treatment of osteomyelitis that can deliver the drug for at least 6 weeks. The PCL and calcium sulfate composite system has not been studied yet. Interaction studies were carried out to check any incompatibility between the ingredients. Implants were prepared by a modified fabrication technique to avoid solvent use. The prepared implants were evaluated for various in vitro parameters like dimensions, hardness, tensile strength, drug release profile, sterility test and morphological changes in pellet before and after drug release. The pellets were also tested for microbiological efficacy and compared with a plain drug solution in different concentrations. Developed pellets are regular in shape and size with good tensile strength. The release profile displayed drug levels above the minimum inhibitory concentration continuously for up to 2 months. A wide zone of inhibition by the pellet against Staphylococcus aureus as compared with the drug solution proves its efficacy in the treatment of osteomyelitis. Results show that the developed calcium sulfate and PCL-based composite biodegradable implantable delivery system of cefuroxime is a good alternate system and can deliver the drug for more than 6 weeks, maintaining an adequate inhibitory concentration at the site.

Key words: Calcium sulfate, cefuroxime sodium, implants, osteomyelitis, polycaprolactone

INTRODUCTION

Osteomyelitis is an infection of the bones characterized by pain, nausea, pus formation, edema and warmth over the affected bone and rigid overlying muscles. It is often caused by bacteria, usually Staphylococcus aureus. The bacteria may reach the bone from outside the body (through open fractures, penetrating wounds or orthopedic surgical procedure), from other sites of infection in the body (abscessed teeth, burn infection, urinary tract infections (UTIs) or upper respiratory tract infections) via the blood or from adjacent soft tissue infections (as occurs in diabetes mellitus).[1] The treatment of chronic osteomyelitis includes debridement of the dead infected tissue, obliteration of dead space, osseous repair, adequate soft tissue coverage and systemic antibiotics. The delivery of antibiotics to the bone varies considerably. Oral antibiotics are unpredictable, with relatively low bone levels, and are used infrequently. Intravenous antibiotics are used commonly in the treatment of chronic osteomyelitis.[2] Six weeks of intravenous antibiotic therapy is necessary for adequate treatment, although prolonged usage of intravenous antibiotics has a significant relapse rate. To supplement systemic antibiotics, local antibiotic delivery has been tried for many years.

The primary benefit achieved with a local antibiotic delivery vehicle is the ability to obtain extremely high levels of antibiotics at the site of infection.[3] This avoids some of the toxicity associated with systemic...
Composite materials are preferred over a single polymer as the implant material has the possibility of variation in physical properties. Various materials other than metal, like organic biomaterials, inorganic biomaterials and their composites, have been used as artificial bone materials to fill bone defects or to replace bony structures.[4] Composite materials often show an excellent balance between strength and toughness and usually show improved characteristics compared with their separate components.[5,6] The composite materials such as ceramics/ceramic composites, hydroxylapatite/plaster of paris,[7,8] calcium phosphate/calcium carbonate,[9] etc., ceramics/polymer composites, hydroxyl apatite (HA)-poly(lactic acid) (PLA),[10,11] HA-collagen,[12] and HA-chitin[13] etc. have been tried.

Calcium sulfate was the first material to be used as bone replacement.[14] We are using calcium sulfate hemihydrate, which is commonly known as plaster of paris. The plaster has a compressive strength of ~24 MPa.[15] Calcium sulfate is also characterized by its ease of sterilization, complete resorption, biocompatibility and stimulation of bone when in contact with periosteum. Calcium sulfate may act as binder, facilitating healing and preventing loss of the grafting material.[16] Moreover, it is tissue compatible and thus does not interfere with the healing process. Calcium sulfate has also been used with other materials, such as autogenous bone,[17] demineralized freeze-dried bone (DFDBA),[18] polymers,[19] etc. Calcium powder acts as a direct source of calcium supply. It completely resorbs after 30-60 days of implantation. Calcium sulfate has been approved by the Food and Drug Administration for use in the fixation of distal radial fracture. Calcium sulfate had been reported as repairing fillers for the treatment of bone defect.[20]

Polycaprolactones (PCLs) are polyesters related to poly lactic acid and poly glycolic acid with similar biocompatibility.[21] PCL has been used in different biomedical applications, such as in scaffolds for tissue engineering of the bone and cartilage.[22] Cefuroxime is a second-generation cephalosporin antibiotic. Cefuroxime is active against a wide range of Gram-positive and Gram-negative bacteria, including *Staphylococcus aureus*, *Streptococcus pyogenes*, *Streptococcus pneumonia* and Neisseria spp. Cefuroxime interferes with the cell wall synthesis in the bacteria. Cefuroxime sodium (CFS) is used in treating infections of the upper and lower respiratory tract, skin and soft tissue, UTI, bone and joint infections and gonococcal infections.

Although an implantable system for ciprofloxacin[23-25] and gatifloxacin[26] has been extensively studied for the treatment of bone infection, the polycaprolactone and calcium sulfate composite systems with cefuroxime have not yet been studied.

Our present work describes the formulation and evaluation of a composite-based biodegradable CFS-impregnated implant for the treatment of osteomyelitis. Both calcium sulfate and PCL were used in its preparation to impart biodegradability and strength.

MATERIALS AND METHODS

CFS (purity ≥ 99%; MW 446.37) was received as a gift sample from Torque Pharmaceuticals Pvt. Ltd., Chandigarh, India. PCL (MW 14,000; Mn 10,000) and calcium sulfate hemihydrate (assay 98%) was purchased from Sigma Aldrich, Mo, USA. All other chemicals and solvents used were purchased from local suppliers and were of analytical grade, unless mentioned otherwise.

Drug–polymer interaction studies

The samples of calcium sulfate hemihydrate, PCL and cefuroxime were prepared individually and in combinations and were sterilized using ethylene oxide. The infrared spectra were taken before and after sterilization at 0 and 24 h using Fourier Transform Infrared spectroscopy (FTIR 8400 S, Shimadzu, Japan). Both spectra were compared for any possible change in content due to interactions between different ingredients or by sterilization.

Preparation of implants

Pellets were prepared by a modified fabrication technique. The pellets were prepared by a modified fabrication technique. Different placebo combinations [Table 1] were tested before final selection of the formulation. Calcium sulfate is responsible for the hardness, but a high concentration of calcium sulfate also gives an eroded surface after keeping in the simulated body fluid (SBF) for 1-2 weeks, which leads to a fast release of the medicament. The F3 formulation with an equal concentration of both polymers was found to be the best.

Table 1: Different placebo combinations tested

<table>
<thead>
<tr>
<th>Codes</th>
<th>PCL (mg)</th>
<th>Calcium sulfate hemihydrate (mg)</th>
<th>Hardness</th>
<th>Surface erosion after 2 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>150</td>
<td>50</td>
<td>8.08 ± 0.78</td>
<td>Eroded</td>
</tr>
<tr>
<td>F2</td>
<td>100</td>
<td>100</td>
<td>11.08 ± 0.59</td>
<td>Not eroded</td>
</tr>
<tr>
<td>F3</td>
<td>50</td>
<td>150</td>
<td>13.08 ± 0.24</td>
<td>Rough surface with some erosion</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n = 6), PCL - Polycaprolactone.
be most suitable in terms of hardness and surface erosion even after 2-3 weeks. Hence, F3 with equal quantities of PCL and calcium sulfate, i.e. 100 mg, is selected for further studies. PCL polymer, calcium sulfate hemihydrate and cefuroxime were taken in a ratio of 1:1:0.75 w/w. PCL was first melted at 60°C and a blend of drug and calcium sulfate hemihydrate were mixed in the melted polymer because PCL gets solidified almost immediately. The mixture was stirred by a mechanical stirrer for 10 min to ensure proper mixing of the drug with the polymer matrix. The composite mixture gets solidified immediately. The compact mass was then passed through a sieve no. 16 to form granules. These granules were compressed as pellets in a tablet punching machine (Mini press; Karnavati, India) [Figure 1]. A batch of 50 pellets was prepared for further studies. The compressed pellets were collected, packed in aluminum foil and stored in a refrigerator under dry conditions. All pellets were sterilized by gas (ethylene oxide) sterilization.

Physicochemical characterization

The prepared pellets were subjected to physicochemical characterization and data are shown in Table 2.

Dimensional analysis

Twenty pellets were randomly selected and subjected to dimensional analysis. The diameter and thickness of the pellets were determined by a digital vernier calliper (Mitutiyo digimatic calliper; Mitutiyo Cooperation, Japan).

Hardness

Six pellets were subjected to hardness analysis. Hardness of the pellets was calculated by a Monsanto hardness tester (model HT01; Orchid Scientifics, Nashik, India). The force was applied diametrically for determining the hardness.

Tensile strength

Rectangular strips of 20 × 15 mm size were cut and subjected to tensile strength analysis using an Instron 5842 (Instron, Canton, MA, USA) using the associated software “Merlin.” Tensile strength at the breakpoint was measured. Five measurements were taken and the data were averaged to obtain a mean value.

Test for sterility

Sterility tests were performed for the sterilized pellet to ensure proper sterilization. Three sterilized pellets were taken and each was placed in a Petri dish containing 10 ml of the culture medium (peptic digest of animal tissue 5 g, sodium chloride 5 g, beef extract 1.5 g, yeast extract 1.5 g, agar 15 g, water q.s. 100 ml) and incubated at 37°C for 3 weeks. Petri dishes were taken out after 3 weeks and evaluated for any growth.

In vitro release profile

The pellet was taken in the dialysis tube (Sigma Chemicals, Mo, USA), which was suspended in a beaker at 37 ± 0.5°C containing 5 ml of artificial SBF; pH 7.4. The composition of artificial SBF used was tris base 6.051 g, NaHCO3 0.35 g, K2HPO4 0.171 g, NaSO4 0.16 g, KCl 0.224 g, CaCl2 0.368 g, MgCl2 0.305 g, NaCl 7.996 g, 1N HCl 40 ml and water q.s. 1000 ml. Aliquots of the medium were withdrawn at different time intervals (24 h duration for the first 10 days followed by 72 h duration for the next 45 days) and equal volumes of fresh media were added to replace the withdrawn samples. The withdrawn samples were filtered, diluted appropriately and estimated for the drug content by ultraviolet spectrophotometry at 215 nm (calibration curve of the drug in SBF was plotted with R² = 0.999). The cumulative percent drug released was calculated.

Scanning electron microscopy studies

Cefuroxime-loaded pellets, before and after in vitro release, were coated with gold under vacuum and scanning electron micrographs were obtained using a jeol, Peabody, MA (JSM-400, Japan) scanning electron microscope. Morphological and topographical changes due to antibiotic release were assessed from the micrographs.

Microbiological assay

The cup plate assay was performed on developed pellets as well as on different concentrations of plain cefuroxime solution in different Petri plates. Nutrient agar was selected as a nutrient media while *Staphylococcus aureus* MTCC 1430 was procured from Institute of Microbial Technology, Chandigarh, India.
used as an indicator organism. A previously prepared dilute sample of inoculum was plated over melted agar medium. The agar medium was maintained in a liquid state by maintaining the temperature at 45°C. The medium was mixed with inoculum and then poured into sterile Petri plates. A cup was made in the plates with the help of a cork borer. Three cups numbered 1, 2 and 3 were prepared in each plate carrying the antibiotic solution of 30, 15 and 0 µg/ml (blank) of cefuroxime, respectively. These cups were then filled with the drug solution and the plates were incubated at 37°C for 48 h. The same procedure was followed for the pellets by replacing the drug solution with the pellets.

RESULT AND DISCUSSION

The interaction studies were carried out to check any possible incompatibility among the formulation ingredients. Infrared spectra of the ingredients before and after sterilization at 0 and 24 h were identical. No additional peak was observed that confirmed that the formulation ingredients were compatible with each other and no physicochemical reactions took place due to sterilization by ethylene oxide and during the manufacturing process.

Pellets formed are shown in Figure 1. All pellets formed were of uniform shape and size. Pellets formed were found to be of uniform thickness. The measured tensile strength of all the pellets was 1 N, indicating reasonable mechanical properties of the prepared implant [Table 2].

Sterilization of the packaged product was performed by gaseous sterilization using ethylene oxide and the test for sterility was performed on a sterilized packaging according to the IP 1996 standards. No microbial growth/microbial contamination were observed up to 14 days of incubation. Hence, the formulation passed the sterility test.

The in vitro release behavior of the formulations was determined in artificial SBF. The release profile of the developed cefuroxime composite implant revealed that 53.3% of the drug content of the implant was released in the first 5 days. Then, there is a continuous release of 73.2% of the drug in 10 days followed by a slow release till 55 days. The release profile was characterized by an initial burst followed by a second stage of gradual delivery of 91.1% over 55 days [Figure 2]. Burst release is a phenomenon frequently associated with polymeric-controlled drug delivery systems. Maintaining a high antibiotic concentration at the site of infection is highly appropriate for treating multibacterial infections, which consequently increases the effectiveness of the treatment.

Scanning electron microscopy studies
In general, rods displayed a very similar texture and morphology regardless of the polymer and antibiotic type used. Cefuroxime-loaded pellets were examined before and after 15 days in the release medium. It was observed that before release the antibiotic crystals on the surface of the rods were partially exposed [Figure 3a] and the surface was smooth as compared with the pellet after drug release. When the drug-loaded pellet was placed in the aqueous environment, pores were created on the exposed part due to removal of drug particles through dissolution. These pores led to water penetration into the pellet and caused further drug dissolution [Figure 3b]. Voids generated reveal uniform drug distribution and release due to diffusion from the pellets.

A cup plate assay of the plain cefuroxime solution showed an inhibitory activity of this drug against S. aureus. The zone of inhibition is concentration dependent, as clearly seen [Table 3]. The cup carrying the 30 µg/ml [Figure 4a, no. 1] concentration has a large inhibition zone as compared with the 15 µg/ml concentration [Figure 4a, no. 2]. Diffusion of the drug from the pellets also showed a clear zone of inhibition. A large zone of inhibition (almost covering the entire plate) was observed at 24 h in the plate carrying the intact pellet [Figure 4b]. It indicates efficacy of the developed pellets in comparison with the simple drug solution.

CONCLUSION

Till date, various materials have been tested for the treatment of osteomyelitis either as a single or as a composite material, which can release the drug over a period of 1 month.

Table 3: Zone of inhibition of different concentrations of cefuroxime sodium solution and pellets

<table>
<thead>
<tr>
<th>Antibiotic medium</th>
<th>Concentration (µg/ml)</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefuroxime sodium solution</td>
<td>15</td>
<td>14.33 ± 1.53</td>
</tr>
<tr>
<td>Cefuroxime sodium solution</td>
<td>30</td>
<td>26.33 ± 1.53</td>
</tr>
<tr>
<td>Cefuroxime sodium pellet</td>
<td>-</td>
<td>38.67 ± 0.577</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD (n = 6).
The developed calcium sulfate and PCL composite prolonged the drug release up to 2 months while maintaining therapeutic levels above the minimum inhibitory concentration of cefuroxime against *S. aureus*. After complete release of the drug and calcium sulfate resorption, the porous PCL scaffold supports the growth of bone cells. Moreover, this composite material has a significant mechanical strength and is suitable for load bearing applications. These pellets are found suitable for prolonged treatment of osteomyelitis up to 2 months. The implant system can be further evaluated for *in vivo* parameters.

REFERENCES

Source of Support: Nil, Conflict of Interest: None declared.