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Abstract

Aim: The maintenance of mean arterial pressure (MAP) is a critical parameter which needs to be continuously 
maintained in patients in trauma or recuperating from surgery. The effective means of maintaining it is through 
intravenous infusions like potent vasoactive drugs like sodium nitroprusside (SNP) and nitro glycerine (NTG). 
Materials and Methods: Maintenance of MAP is critical, and to keep it control many drug delivery and control 
strategies powered by fuzzy logic, artificial neural network, and internal model control are used. In this work a 
modeling and simulation study was attempted to develop and validate a viable computational therapeutic model 
of the patient infused with the drug. Results and Discussion: The model developed helps us to study and predict 
the patient’s response to the drug during simulation stages. This work considers the modeling of patients based 
on based on an open source dataset of MAP in response to the drug administered (NTG) collected from a critical 
care unit. Conclusion: The data obtained was used to develop a therapeutic model based the first order–dead 
time using the linear time domain system identification method. The obtained models were classified into fast 
responders, normal responders and slow responders based on the model parameters.
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INTRODUCTION

The intravenous (IV) infusion of the 
drug is a viable and efficient means of 
eliciting a therapeutic response. Despite 

this advantage, the IV infusion needs to be 
administered with caution and is a highly manual 
and guess prone process of administration.[1] 
One specific case is the infusion of vasoactive 
drugs such as sodium nitroprusside (SNP) and 
nitroglycerine (NTG) to lower blood pressure in 
patients who are recuperating from surgery or 
trauma. There are two methods for administering 
the drug. The first one is a bolus injection 
that rapidly lowers blood pressure but has the 
disadvantage of rapidly diminishing effect, 
and that it can only be applied periodically to 
avoid cyanide poisoning. The second method is 
the continuously controlled release of the drug, 
which has the advantage of achieving lower 
blood pressures over long periods of time. This 
problem can be solved by developing a control 

system to find the correct dose which quickly lowers the blood 
pressure to the desired level, while avoiding a drug overdose. 
A computational model for the patient’s response to the 
administered drug has been developed by Slate and Sheppard 
(1982) and Slate et al. (1980) and has been subsequently 
used by several workers to develop a controller design for 
programmed control of drug infusion in drug infusion pumps. 
The model propounded is a linear single-input-single-output 
(SISO) model which considers the intrasubject variability in 
physiological parameters found in different patients to the 
drug.[2] Slate et al. (1980) have performed extensive studies 
on the patients to find a model that relates the change in blood 
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pressure to the infusion rate of the vasoactive drug. They 
used correlation analysis with a pseudorandom binary signal 
to derive the transfer function which helps to infuse the drug 
shown in Equation (1).
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where, ∆Pd (s) refers to the change in the mean arterial 
pressure (MAP) in units of mmHg and the I(s) is the infusion 
rate of the drug in mlh−1, K is the sensitivity of the patient 
to the drug in mmHg (mlh−1)−1, α is the dimensionless 
recirculation coefficient, Ti is the initial transport delay in 
s, Tc is there circulation transport delay in s, and τ is a lag time 
constant in s. Slater et al. had reported no average value for 
the recirculation component but noted that the steady-state 
gain has a high degree of intrasubject variability as high as 
36 folds.[3] Due to this inherently high intrasubject variability 
in the subject the researchers adopt a PBRS which mimics 
the output similar to a random sequence which is statistically 
consistent.

In this work, the response of MAP to NTG was studied for 10 
different patients and similar first-order dead time models are 
developed. The model feasibility was studied through input-
output plots and presented in the results and discussion.

METHODOLOGY

Clinical patient data for the study

Data were obtained from a published thesis obtained from 
the public domain. As per the data, 10 patients were collected 
who were recuperating from surgery.[2,6] This dataset entails 
MAP of the patients was monitored, and NTG dosage was 
administered to control any fluctuation. The MAP and NTG 
rates were observed and recorded at an interval of 5 min for 
the duration of 1 h. Thus, the time synchronized records of 
input and output data of MAP change and drug rate were 
generated for modeling.

Modeling and simulation platform

Matlab® version 2017a with Model Predictive Control 
toolbox was used for modeling purpose, and Simulink® was 
used to simulate the runs of the model developed.

System identification

System identification is the procedure of developing or 
improving the mathematical representation of a biological or 
a physical system using an experimental dataset. The model 
parameters are computed from the system matrices obtained 
from real-time data. System identification is required to 

create models of dynamic systems that cannot be modeled 
from first principles or specifications. In this work, the patient 
is construed as plant/model. Drug disposition among patients 
is extremely complex with high intra subject variability . The 
parameter values of a human model changes with respect to 
several intrinsic or extrinsic factors and the modeling cannot 
be carried out with first parameter mathematical modeling 
techniques.[4] Hence, to address this, complex higher order 
human patient system is represented as a first-order system 
with dead time as shown in Equation (1). It has been observed 
from clinical studies that the recirculation coefficient α 
in Equation (1) can be approximated to zero without any 
deviation in the MAP response. Literature studies have 
shown that this system, shown in Equation 2, very closely 
approximates the real-time patient as the dead time accounts 
for all the response and recirculation delay encountered in 
an actual patient, hence closely matching a real response.[5,6]
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The estimation of the system model is carried out using 
the constrained black-box modeling. Black-box models are 
formulated based on experimental datasets. A purely black-
box model is not reliable when the process or the system 
exhibits significant nonlinear behavior when moving into new 
operating conditions, which may result from configuration 
changes, new operating practices, or external factors.[7] In this 
work, the black-box modeling is used in conjunction with 
the semi-physical modeling using the a - priori knowledge of 
the model’s physical structure in Equation (2) to estimate the 
parameters of the black-box model.[8]

System identification on MATLAB

System identification is implemented in MATLAB (for the 
data modeling) using the System Identification Toolbox. 
This toolbox uses time-domain and frequency-domain 
input-output data to identify and modulate continuous-time 
and discrete-time transfer functions - in this case, the drug 
infusion volumes, process models, and state-space models.[9] 
The toolbox performs gray-box system, rather than a binary 
input, identification for estimating the parameters of a user-
defined model. The identified model is used for predicting 
the system response plant modeling in the Simulink.

System Identification Toolbox enables the estimation 
of multi-input multi-output continuous or discrete-time 
transfer functions with a specified number of poles and 
zeros.[10,11] In cases where a low-order continuous-time 
model in pole-zero form is required, the toolbox estimates 
the process models, which are simple transfer functions 
involving three or fewer poles, and optionally, a zero, a 
time-delay, and an integrator.[12]
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System process modeling: Procedure

The input and output matrices for each data set are first 
obtained using the data. For modeling using system 
identification, the matrices generate a unique data-object 
for each patient.[13] This is carried out using the MATLAB 
keyword id data, as shown in Equation (3).

	 data = id data (y,u,Ts)� (3)

This creates an id data object containing the time-domain 
output signal y and input signal u, respectively. Ts specifies 
the sampling interval of the experimental data. Figure 1 
shows the data object so obtained that is imported to the 
System Identification Toolbox.

In the System Identification Tool graphical user interface, 
working data refer to estimation data. Similarly, validation 
data refers to the data set used to validate a model.[14,15] 
Residual analysis is performed using the validation data. The 
working data are then used to estimate the process model 
shown in Figure 2. The estimation is carried out using one of 
the numerical methods such as the Gauss-Newton, Adaptive 
Gauss-Newton, Levenberg-Marquardt, Trust Region 
Reflective Newton or Gradient Search, depending on the type 
and nature of the data.[16,17]

The system then computes and estimates the values of 
gain K, time constant Tp1 and the time delay Td, as shown 
in Figure 3. The output MAP for the same set of input NTG 
is also computed for the estimated patient model using 
time plots, the MAP output simulated from the estimated 
first-order dead time patient model closely follows the 
MAP measured from the patient during the conventional 
administration.[18,19] This proves that the model obtained using 
system identification considers the recirculation delay, initial 
delay, and disturbances that affect the patient’s response to 
the drug in a real-time scenario.[20,21]

MODELS OBTAINED FROM CLINICAL 
STUDY DATA

This study aims at modeling the response of the patient MAP 
to the vasodilator drug NTG. Clinical data were used to 
derive the mathematical representation of the model, called 
data-driven model. Through this process, an accurate model 
can be constructed quickly, and the model can be well trusted 
because the data obtained from the actual system are used to 
derive it. To find the SISO model parameters, the previously 
described system identification algorithm based on the black-
box step response modeling has been used. Table 1 gives the 
estimated values of K, Td, and τ for all patients.

Literature study, it was found that the steadystate gain was 
found highly variable and can differ as much as 36 fold 

from one subject to another.[2] Based on the obtained model 
parameter values, the patients can be classified as “slow 
responders”, “normal responders” and “fast responders.” 
This classification has been arrived at after studying the 
sensitivity, time constant, and the time delay of each 
patient. The patient models with large values of delay time 
and low magnitude of sensitivity were found to be less 

Figure 1: Import of data object for system identification

Table 1: Estimated model parameters for patients
Patient No. K mmHg (mlh−1)−1 τ (s) Td (s)
1 −3.81704 285.66 29.675

2 −0.5876 0.0067 6.9843

3 −0.63 32.67 120.98

4 −2.2323 11.8345 0.00132

5 −2.276 5.9766 9.978

6 −4.675 0.002 143.87

7 −6.4367 2.8856 102.54

8 −15.564 31.39 4.9875

9 −187.87 2.9976 1.1786

10 −340.78 58.567 148.2
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responsive to the drug NTG. On the other hand, patient 
models with a high magnitude of sensitivity value and 
low delay time were found to be highly responsive to the 
drug. In this study, the patients were in the age group of 
30–55 years and were all diagnosed with hypersensitivity. 
The gender distribution was equal among the 10 patients. 
Thus, the entire study was carried out on patients with 
similar physiology and the obtained models very closely 
satisfied the properties of the actual patient.[12]

MODEL VALIDATION

The parameters obtained in Section III were used to model 
the patients, and a simulation experiment was carried out 
using Simulink, as shown in Figure 4. For each patient 
model, the simulation drug input was the same as the drug 
input measured during the measured response. Thus, the 
same drug dosage is given over the same period to the patient 
model. The simulation output is the patient MAP.

A plot of MAP (mmHg) versus Time (s) was obtained. The 
accuracy of the obtained SISO models was validated through 
the output. This illustrates the measured MAP of a patient 
and the MAP obtained from the patient model, respectively, 

for the same set of drug input. From the graphical analysis 
of all sets of patient data, it was observed that the measured 
MAP of the patient and the MAP reading obtained from the 
simulation using the estimated patient model showed the 
same trend with a deviation of approximately 21%.

RESULTS AND DISCUSSION

The design of patient models as responsive, less responsive, 
and normal patients as discussed in the previous section was 
found to be similar to the general classification proposed by 
Slate et al. for the effect of SNP on MAP. At present, the use 
of SNP during anesthesia and surgery is controversial.[17] This 
is because it increases the risk of intrapulmonary shunting. 
This necessitates the use of additional blocking agents to 
minimize the undesired effects. Therefore, the SNP is being 

Figure 2: System Identification Toolbox graphical user interface and process modeling to estimate the unknown parameters

Table 2: Classification of patients based on the estimated models
Parameter Slow responders Normal responders Fast responders
K Steady‑state gain mmHg (mlh−1)−1 −2.17 −7.23 −64.35

T time constant (s) 160.60 9.98 4.45

Td time delay (s) 76.42 64.82 2.60

Figure 3: Estimated model parameters
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replaced by NTG. With the use of NTG, there is significantly 
less blood loss and no ECG changes suggestive of myocardial 
ischemia. Thus, NTG is being successfully utilized worldwide 
to control mean arterial blood pressure.

CONCLUSION

In this paper, the effect of NTG on the MAP was studied 
through clinical observation of with similar physiological 
standing. The patient parameters obtained using the estimated 
models have been tabulated in Table 2. The table portrays the 
average value of each parameter for the three patient types. 
This classification makes it possible to standardize the patient 
model during the design phase for the control of MAP. Thus, 
standard models can be designed for each response, less 
responsive, and normal case and the gain values can be tuned 
to obtain the model that accurately describes each patient. The 
mathematical modeling of the patient’s MAP response to the 
NTG, which has been derived in this paper, can be used in all 
types of linear control systems for software simulation. The 
models can also be converted suitably and used in embedded 
control systems to test and verify various control algorithms 
for the control of MAP.
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