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Leukosis Mathematical Model

Eugeny Petrovich Kolpak, Raisa Tagirovna Abuzyarova, Sergey Alexandrovich 
Kabrits

Department of Computational Methods in Continuum Mechanics, Faculty of Applied Mathematics and Control Process, 
Saint Petersburg State University, Russian Federation, 199034, Universitetskaya Nab, 7/9, Saint Petersburg, Russia

Abstract

Aim and Scope: The present study is about developing the mathematical model of leukosis according to modern 
data on hematopoiesis among mammals. Materials and Methods: Three types of cells are considered in the 
model, one of which is represented by leukemic ones. The interaction of cells is considered as the competition for 
the functional space of dividing cells. For leukemia cells are the cells dividing at a higher speed as compared to 
all the others. Results and Discussion: The model of leukemic cells replacement with donor cells is considered 
as the introduction of more active cells than leukemic ones. The model is represented by the Cauchy problem for 
the system of ordinary differential equations. Conclusion: The violation of hematopoiesis functions is compared 
with a leading parameter change, which transfers the system from a stable steady state to an unstable one.
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INTRODUCTION

Leukemia is one of the acute diseases. 
All age cohorts are subjected to it. This 
disease is difficult to cure; it can last 

for years despite any treatment. It provides a 
very high percentage of deaths. The disease 
proceeds with complications. The most 
common and expensive method of treatment is 
the transplantation of the donor bone marrow in 
a sick organism. However, an immune system 
starts to reject foreign cells and, thus, the 
remission is often accompanied by some disease 
of other organs. The treatment is carried out also 
by the introduction of drugs into a sick body. 
These drugs help to cope with the disease. With 
a favorable outcome of treatment, the remission 
does not mean that there will be no relapse. The 
mathematical modeling of leukemia and the 
variants of its treatment can help the experts 
treating the disease to plan the treatment both 
according to its terms and at its cost.

Hematogenesis

Hematogenesis is the process of platelet, 
erythrocyte, and leukocyte development. It 
includes many individual processes occurring 
at different levels of cell division.[1] The 
multiplication of cells and their mortality 
are determined by the system of regulatory 
factors, stress signals, and the interaction with 

the surrounding microenvironment.[2] The ancestral cells 
of hemopoiesis are stem cells (SCs), due to which a stable 
hematopoiesis is provided.[3] The result of division is that 
SC can develop two types of cells: Daughter cells that are 
identical to a parent cell, and the cells that go to the maturing 
fraction and begin the pathway of differentiation. Acute 
leukemia is a cellular clone, all elements of which are the 
descendants of one cell.[4] An original mutation occurs in a 
SC. Genetic instability leads to additional mutations, and 
thus the cells of a formed clone cease to differentiate, afflict 
the bone marrow gradually by morphologically immature 
hematopoietic cells with the displacement of normal cells by 
them.[5]

The behavior of SC is affected by their microenvironment or 
their niche. Niches are a heterogeneous space for SC, in which 
SC behavior is controlled and their abundance is regulated 
through the signals from cells and non-cellular factors. 
Depending on signals, SC can either proliferate, be at rest, 
or differentiate.[3,5] The differentiation and the proliferation 
of hematopoietic cells occur simultaneously. An equilibrium 
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is maintained between different types of hematopoietic cells 
due to the niches.

Leukemia cells are located in the same niches as hematopoietic 
SC and progenitor cells, resulting in the competition for 
a niche. In particular, leukemic cells are able to produce 
excessively a colony-stimulating factor that increases the rate 
of their division in comparison with a normal cell division 
rate (myelopoiesis stimulant), which acts more specifically 
on leukemic than on normal hematopoietic progenitor 
cells.[3,4] At the same time, malignant cells have the ability 
to inhibit selectively the proliferation and the differentiation 
of normal precursors using humoral inhibitors even in small 
amounts.

Thus, competition takes place in a niche for the functional 
space between different cells.[6] The cells which proliferate 
faster, giving off numerous offspring, have a competitive 
advantage. The proliferation rate of SC is regulated by the 
signals coming from microenvironment cells. The violation 
of a niche functional state leads to cell generation rate 
increase or to its decrease.

Mathematical models, developed on the basis of process 
knowledge, leading to the emergence of serious diseases, 
allow us to find the rational strategies for disease prevention 
and treatment. Therapy is one of the treatment methods. 
Treatment involves several courses of therapy, each of 
which consists of sequential administration of drugs at 
predetermined periods of time.[7] SC transplantation is a 
difficult method of treatment.[8] Both methods are not always 
successful and effective ones.[9]

Experimental

Mathematical model of leukosis

The mathematical models proposed in the literature[5,10] 
are represented by the systems of ordinary differential 
equations.[11,12] In,[13,14] the model of the immune response 
to the appearance of leukemic cells is proposed, and in[15] 
they propose the options for leukemia treatment modeling. 
The level of blood diseases among Russian population is 
reflected in.[16] The concept of competition of all types of 
cells competition for functional space is taken as the basis for 
leukemia modeling.[17]

The mathematical model assumes that leukemia has a 
hierarchical structure. Four types of cells are considered: 
Healthy, leukemic, stem, and microenvironment cells 
that regulate the proliferation of SCs. Leukemic, healthy, 
and SCs are combined into one pool of a single volume. 
If we assume that µs is the number of SCs in a niche, 
µh - healthy, µd - leukemic ones, then their number at the 
time of hematopoiesis beginning must satisfy the condition 
µs+µh+µd≤1. Distribution of proliferating SCs between 
patients and healthy one occurs under the influence of 

microenvironment cells µα at the ratio α:1−α (0<α≤1)). 
Healthy, sick, and SCs can reproduce themselves at specific 
rates equal to µ1, µ2, and µ3, respectively. The rates of healthy 
and sick cell transition to ф bloodstream are equal to µ1 and 
µ2, respectively. The rate of cell transition µs into healthy 
and diseased ones is regulated by microenvironment cells 
µα. Taking into account these assumptions, the mathematical 
model of leukemia is represented by the Cauchy problem for 
the system of four ordinary differential equations.
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The multiplier 1−µh−µd−µs in the first three equations is a 
cell-free part of the pool, and the parameter β corresponds to 
the number of SCs of the niche in the equilibrium state with 
the natural generation of all cell types.

All unknown quantities in the model are considered 
dimensionless. Time t is also considered dimensionless, 
however, as for real processes, the unit of dimensionless time 
can be compared with a day in a real process.

SCs µs leave the niche with the speed γµsµα under the influence 
of microenvironment cells µα and pass into the profiling 
healthy (µs) and leukemic (µd) cells. With the increase of SC 
number in the niche above the threshold value β, the number 
of microenvironment cells that cause SC leaving rate increase 
from the niche with the speed γµsµα also increases and with 
the decrease of SC number in the niche, the rate of care will 
be decreased.

If a niche is absent (in (1) γ1=0, µs=0, µα=0 ), the first two 
equations in (1) take the following form.
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In the first stationary point, the eigenvalues of the Jacobi 
matrix from the right-hand side of equations (2) will be

λ µ1 1= −
 
and λ

µ
µ2
2

1
1 2= v v− .

Moreover, this stationary point will be stable if the inequality   
µ µ2 1 1 2v v< is performed. That is, if the specific rate of tumor 
cell generation is small or the rate of their escape into the 
system is large, then cells µh will displace the cells µd in time. 
If this inequality is not satisfied, then the second stationary 
point will be a stable one.

RESULTS AND DISCUSSION

Cell transplantation model

One of the ways of treatment is the transplantation of donor 
cells. If their activity is higher than that of the host cells, 
they will displace the host cells gradually. As the practice 
of clinical research shows, donor cells do not always get 
accustomed to a new organism. Taking this into account, the 
model of host cell displacement by donor cells uL  will be 
represented by the system of differential equations.
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In which µ3 is the specific rate of donor cell multiplication 
and 𝜈3 is the rate of donor cell transition into a bloodstream. 
The inhibitory effect of host cells on donor cells is taken into 
account by the introduction of the element γµhµL into the 
second equation with the parameter γ, which determines the 
inhibition intensity.

The system of equations (3) has three non-trivial stationary 
points
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The third stationary point exists if the following inequalities 
are performed:
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In the first stationary point, one of the eigenvalues of the 
Jacobi matrix from the right-hand side of equations (3) will 
be positive one if the following inequality is performed.
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This inequality for the model (3) is the condition for the 
replacement of host cells by donor cells.

The second stationary point will be a stable one[18,19] if the 
inequality µ3𝜈1<µ1𝜈3 is performed.

The third stationary point has the characteristic polynomial 
of the Jacobi matrix from the right-hand side of equations (3)

P(λ)=λ2+(µ1µh+µ3µL)λ−γµ1µhµL

has the roots of opposite signs. Therefore, this stationary 
point will be unstable one.

Thus, the donor cells of the model (3) either displace host 
cells, or the host cells displace them.

The model (3) for the case of healthy and leukemic cell 
presence takes the following form
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The solution of these equations for the case 𝜈1=𝜈2=𝜈3=0.1, µ1=1.0, 
µ2=1.5, and µ1=2.0, γ=0.007 is shown in Figure 1. The dotted 
line marks the time (t=60) of donor cell transplantation. In this 
example, donor cells displace both healthy and leukemic cells.

Stationary points

The stationary values of equation system (1) and their 
stability are studied by numerical methods. For the case of 
constants µ3=20, α=0.98, 𝜈1=0.5, 𝜈2=0.5, Figure 2 shows 
the dependence of the stationary values µh on the parameter 
values β. Curve 1 corresponds to the values µ1=1.0, µ2=1.0, 
and curve 2 - µ1=1.0, µ2=1.5. The dashed line represents 
the boundary between the region of stable (Reλ<0) and the 
region of unstable (Reλ<0) stationary points. The curve 1 and 
2 almost coincide in the region of stable stationary points.

The stationary points of equation (1) system depending on 
the values of the parameter β can be either stable or unstable 
ones. Oscillations appear in the system at small values of the 
parameter β. The latter is interpreted as the emergence of 
disease with a shortage of SCs. Figure 3 with the values of 
the parameters β=0.2, µ1=1.0, µ2=1.5, µ3=20, α=0.98, 𝜈1=0.5, 
𝜈2=0.5 shoes the change of µh(t), µd(t), and µs(t) in time. The 
stationary point in the case under consideration is not stable, 
periodic oscillations appear in its neighborhood.
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Disease treatment model

The appearance of the disease in the model (1) is considered 
as the change in the time moment t0 of the parameter β, which 
transfers a stable stationary state to an unstable one. Then, 
treatment is considered as such an effect on this parameter, 
under which it returns to the “normal” state. In this case, 
the administration of the drug occurs from the moment of 
time t1 to the moment of time t2. Let, Δβ is the parameter β 
deviation from the initial value, and Drug(t) is the law of drug 
administration which changes the disturbance value. Then, 
the model of cell generation disruption and the treatment of 
malfunctions have the following form taking into account the 
fourth equation in (1)

du

dt
u u

d

dt
Drug t

a
a s= − + −( )

= −

µ β β

β
β

4 ∆

∆
∆

,

( ).

Drugs can be given continuously in time (Drug(t)=const) or 
periodically. The model of periodic impact can be represented 
by the following function:

(Drug(t)=Dsin(ωt), if sin(ωt)>0,

(Drug(t)=0, if sin(ωt)≤0.

The simulation results for this function are shown in Figure 4 in 
the form of the following dependencies: µh(t), µd(t), and µs(t).

For the case of the constants β=0.35, µ1=1.0, µ2=1.5, µ3=20, 
α=0.98, 𝜈1=0.5, 𝜈2=0.5, the stationary point µh=0.526, µd=0.031, 
µα=0.646, and µs=0.359 is a stable one in the time interval [0,t0] 
(zone A on Figure 4). At the time moment t=t0, the parameter β 
takes the value . The stationary point of the equation system (1) 
will be unstable one at this value of the parameter β [Figure 2]. 
There are oscillations in the system (zone B of Figure 4). 
That is, the system goes into an unstable state. The drug is 
introduced D=0.12 and ω=2π/20 (Drug zone on Figure 4) 
from the time moment t=t1 till the time moment t=t2. A gradual 

Figure 1: Function dependence graphs µh(t) (curve 1), µd(t) (curve 2), µL(t) (curve 3) on t provided that µL(t)=0 at t <60 for the 
case µ1=1.0, µ2=1.5

Figure 2: The graphs of stationary value dependence µh on the parameter β. Curve 1 - µ1=1.0, µ1=1.5, curve 2 - µ1=1.0, µ2=1.0. 
The dashed line represents the interface between the regions of stable (Reλ<0) and unstable (Reλ<0) stationary points
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decrease of the parameter β excitation transforms the system 
into the region of stable stationary points.

CONCLUSION

The solution of the Cauchy problem for the systems of 
differential equations was carried out using the Runge–
Kutta method in Dormand-Prince modification within the 
programming environment of the mathematical package 
MatLab. The built-in function ode45 was used. The 
parameters of the equation systems µ1, µ2, and µ3, determining 
the reaction rates, can differ by 2–3 times as follows from 
the results of clinical studies. In this range, the differences of 
equation system parameters are not rigid ones. Nevertheless, 
since the solutions were developed in the vicinity of unstable 
points, the solution results were compared with the solutions 
developed by the use of ode23tb function, designed to solve 
“hard” systems. The results, which were developed by both 

functions with the accuracy of 10−6, coincided in the studied 
range of parameter variation.

Thus, the developed model explains the mechanism of 
several types of cells interaction as the competition for the 
functional space with the displacement of all cells from it 
by more active cells, and the disturbance of hematopoiesis 
functions explains the transition of the system from a stable 
region to an unstable one.
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