Method Development and Validation for the Simultaneous Estimation of Rosuvastatin and Amlodipine in Bulk and its Formulation using Reverse-Phase High-Performance Liquid Chromatography

Narender Boggula, Gowri Manoja Mulagada, D. K. Shanthi Priya, Vasudha Bakshi, Himabindu Peddapalli

Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag Group of Institutions, Venkatapur, Ghatkesar, Telangana, India

Abstract

Background: High-performance liquid chromatography (HPLC) is basically a highly improved form of column liquid chromatography. Instead of a solvent being allowed to drip through a column under gravity, it is forced through under high pressures of up to 400 atmospheres which makes it much faster. All chromatographic separations including HPLC is based upon the resolution of the sample constituents as per the difference in their relative affinities towards stationary phase and mobile phase used. Aim: A simple, specific, accurate, and precise reverse-phase HPLC method was developed and validated for the estimation of rosuvastatin and amlodipine (Rosudapin) in pharmaceutical dosage form. Materials and Methods: An Aquasil column reversed phase C-18, 5 μ m column having 4.6 mm \times 250 mm i.d. in gradient mode, with mobile phase containing HPLC grade acetonitrile:phosphate buffer (pH 3.8):methanol in proportion 30:60:10 v/v, was used. The flow rate was 1 ml/min and effluents were monitored at 251 nm using PDA detector. Linearity was observed over a range of 5-25 µg/mL of rosuvastatin and 2.5-12.5 µg/mL of amlodipine, respectively. Results and Discussion: The method was validated for linearity, accuracy, precision, limit of detection, limit of quantitation, robustness, and ruggedness. The limit of detection and estimation of analytes was found to be 3.1 µg/ml and 2.98 µg/ml, and the limit of quantification of analytes was found to be 102 μ g/ml and 9 μ g/ml, respectively, for rosuvastatin and amlodipine. Conclusion: The proposed method was successfully applied for the quantitative determination of rosuvastatin and amlodipine in pharmaceutical dosage form.

Key words: Amlodipine, precision, reverse-phase high-performance liquid chromatography, rosudapin, rosuvastatin, simultaneous estimation

INTRODUCTION

R osuvastatin belongs to the class of statins^[1] (antilipidemic). It is chemically (3R,5S,6E)-7-[4-(4-fluorophenyl)-2-(N-methylmethanesulfonamido)-6-(propan-2-yl)pyrimidin-5-yl]-3,5-dihydroxy hept-6-enoic acid [Figure 1] and is available in its calcium form, commonly called as rosuvastatin calcium. Rosuvastatin is a hydroxymethylglutaryl-CoA reductase inhibitor or it reduces plasma concentrations of LDL-cholesterol, apolipoprotein B, and triglycerides

and prevents cardiovascular disease. Rosuvastatin is commonly used as a statin with mild, asymptomatic, and

Address for correspondence:

Himabindu Peddapalli, Department of Pharmaceutics, School of Pharmacy, Anurag Group of Institutions, Venkatapur, Ghatkesar, Telangana – 500088, India. Phone: +91-9989377400. E-mail: bindu.sweety369@gmail.com

Received: 01-08-2018 **Revised:** 04-10-2018 **Accepted:** 16-11-2018

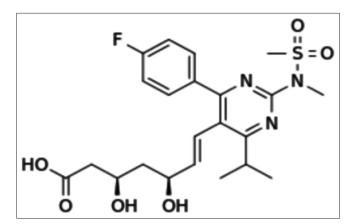


Figure 1: Structure of rosuvastatin

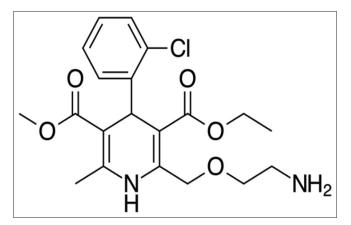


Figure 2: Structure of amlodipine

self-limited serum aminotransferase elevations during therapy.

Amlodipine [Figure 2] is used to treat high blood pressure and coronary artery disease such as chronic stable angina.^[2] It is a long-acting 1,4-dihydropyridine calcium channel blocker. It is chemically (RS)-3-ethyl 5-methyl 2-[(2-aminoethoxy) methyl]-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate. Amlodipine decreases arterial smooth muscle contractions and inhibits the influx of calcium ions through L-type calcium channels. Inhibition of the initial influx of calcium decreases the contractile activity of arterial smooth muscle results in vasodilation.

A combination of rosuvastatin and amlodipine (Rosudapin)^[3] is given in adults for the treatment of increased blood pressure and with high cholesterol level, when changing diet and doing more exercise were not enough to prevent cardiovascular events.

A detailed survey of the analytical literature for rosuvastatin and amlodipine revealed few methods based on a number of techniques such as ultraviolet-spectrometry^[4,5] and HPLC methods.^[6-10] Since a HPLC method has many advantages, it is often the first choice for developing an analytical. Conformation of the applicability of the developed method was validated according to the ICH guidelines.^[11,12]

MATERIALS AND METHODS

Instruments

A water module equipped with autosampler and PDA detector (996 model) 2695 separation module for finding out the λ max values of the drug was used throughout this study. An Aquasil C18 (4.6 mm × 250 mm, 5 μ m) (Make: Thermo Scientific) column was employed for the method development. The chromatographic system was monitored by EMPOWER2 software. The digital ultrasonicator and pH meter were from Enertech and Lab India, respectively.

Chemicals

HPLC grade acetonitrile and orthophosphoric acid were obtained from Merck India Ltd., Mumbai, India. Analytical grade methanol was obtained from Lichrosolv (Merck India Ltd.) and 0.45 μ m membrane filter was obtained from Pall Life Sciences, Mumbai, India. High purity deionized water was obtained from a Milli-Q (Millipore, Milford, MA, USA) purification system. Anhydrous dihydrogen phosphate and citric acid were from Finar Chemicals.

Preparation of phosphate buffer (ph - 3.8)

About 0.9 g of anhydrous dihydrogen phosphate and 1.298 g of citric acid monohydrate were dissolved in sufficient water to produce 1000 mL with pH adjusted to 3.8 using orthophosphoric acid.^[13-15]

Preparation of mobile phase

Nearly 300 ml (30%) of HPLC acetonitrile, 600 ml of phosphate buffer (3.8) (60%), and 100 ml HPLC Methanol (10%) were mixed and degassed in a digital ultrasonicator for 10 min and then filtered through 0.45 μ filter under vacuum filtration.

Diluent preparation

The mobile phase was used as the diluent.

Preparation of standard solution

About 10 mg of rosuvastatin and 10 mg of amlodipine working standard wereee accurately weighed and transferred into 10 mL volumetric flask each. 10 ml of diluents were added, sonicated, and diluted with diluent up to the mark. Further pipette 0.15 ml and 0.075 ml of the above rosuvastatin and amlodipine stock solutions into a 10 ml volumetric flask and dilute up to the mark with diluents to form 15 μ g/ml of rosuvastatin and 7.5 μ g/ml of amlodipine solutions.^[16,17]

Preparation of Sample Solution

10 combination tablets were crushed and powder weight equivalent to 10 mg of Rosuvastatin and Amlodipine was weighed and added to 10 mL clean dry volumetric flask. Make up this with 10 mL of diluent and sonicate to dissolve it completely. Further pipette 0.15 ml of above stock solution into a 10ml volumetric flask and dilute up to the mark with diluents to form 15 μ g/ml of sample solution.

Optimized Chromatographic Conditions

Separation was achieved using a mobile phase consist of acetonitrile:phosphate buffer (pH 3.8):methanol in proportion 30:60:10 v/v, respectively, at a flow rate of 1 ml/min. The eluent was monitored using PDA detector at a wavelength of

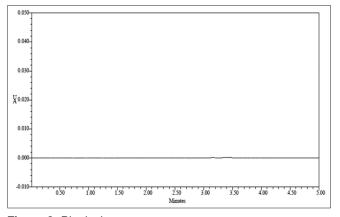


Figure 3: Blank chromatogram

251 nm. The column was maintained at ambient temperature, and an injection volume of 20 μ l was used. The run time was 8 min. The mobile phase was filtered through 0.45 μ m filter before use. Solubility of the compounds was enhanced by sonication on an ultrasonicator (Bandelin Sonorex).

RESULTS AND DISCUSSION

Validation

Before validation studies, blank solution was injected and chromatogram was noted [Figure 3]. Optimized conditions were maintained with good retention time and resolution which were shown in Figure 4.

Linearity

The linearity of the method was established by determining the absorbance of different concentrations over a range of 5-25 μ g/mL of Rosuvastatin and 2.5-12.5 μ g/mL of Amlodipine respectively. The calibration curve of Rosuvastatin and Amlodipine were given in Figures 5 and 6 respectively. The linearity data was given in Table 1.

Accuracy

To determine the accuracy of the proposed method, recovery studies were carried out and percentage recovery and standard deviation are calculated and represented in Tables 2 and 3. Each sample was injected thrice each.

Table 1: Results of method linearity for rosuvastatin and amlodipine					
Concentration of rosuvastatin (µg/mL)	Peak area	Concentration of amlodipine (µg/mL)	Peak area		
5	1,692,344	2.5	927,035		
10	3,214,138	5	1,706,996		
15	479,1958	7.5	2,582,231		
20	6,385,532	10	347,0152		
25	7,730,420	12.5	4,180,508		

Table 2: Results of accuracy data for rosuvastatin						
Accuracy level (%)	Peak area	Average peak area	Average % recovery	Standard deviation	% RSD	
50	2,629,787	2,630,409	98.0%	10905.83	0.415	
50	2,641,613					
50	261,9828					
100	5,283,037	5,277,055	99%	8566.092	0.162	
100	5,267,242					
100	5,280,886					
150	7,524,348	7,514,836	100.6%	8276.242	0.110	
150	7,509,284					
150	7,510,875					

RSD: Relative standard deviation

Boggula, et al.: Simultaneous estimation of rosuvastatin and amlodipine in bulk and its formulation using RP-HPLC

Table 3: Results of accuracy data for amlodipine							
Accuracy level	Peak area	Average peak area	Average % recovery	Standard deviation	% RSD		
50%	1,365,757	1,366,666	98%	6960.626	0.51		
50%	1,374,036						
50%	1,360,204						
100%	2,782,810	2,777,487	100%	19844.78	0.714		
100%	2,794,128						
100%	2,755,524						
150%	4,156,891	4,151,220	99%	7650.882	0.184		
150%	4,142,518						
150%	4,154,251						

RSD: Relative standard deviation

Table 4: Results of precision data					
Analyte	Parameters	System precision	Method precision		
Rosuvastatin	Mean peak area	5,680,917	5,257,650		
	Standard deviation	22699.72	45206.32		
	% RSD	0.39	0.85		
Amlodipine	Mean peak area	2,626,428	2,774,987		
	Standard deviation	5215.789	22806.64		
	% RSD	0.198	0.82		
RSD: Belative standard deviation					

RSD: Relative standard deviation

Table 5: Results of LOD and LOQ data				
LOD	LOQ			
3.1	10.2			
2.98	9.8			
	LOD 3.1			

LOQ: Limit of quantification, LOD: Limit of detection

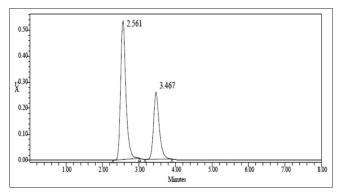


Figure 4: Optimized chromatogram of rosuvastatin and amlodipine

Precision

The precision of the method was demonstrated by method precision and system precision. Five replicate injections of

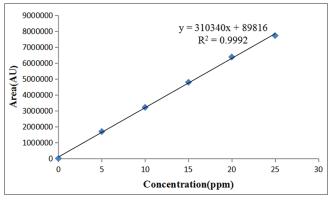


Figure 5: Calibration curve of rosuvastatin

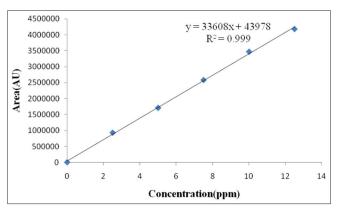


Figure 6: Calibration curve of amlodipine

the sample solutions were made, and the percentage relative standard deviation was calculated and is represented in Table 4.

Limit of Detection (LOD) and Limit of Quantification (LOQ)

The values for LOD and LOQ are given in Table 5.

Robustness

The robustness of the proposed method was determined by analysis of aliquots from homogenous lots by differing physical parameters like flow rate, mobile phase composition which may differ but the responses were still within the limits of the assay. The results of Robustness data are given in Table 6.

ASSAY

The commercial combination tablets (Rosudapin -10 mg Amlodipine and 5 mg of Rosuvastatin) were analyzed by

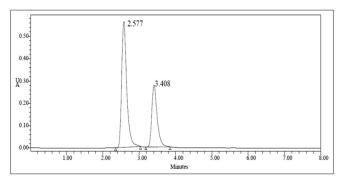


Figure 7: Chromatogram of assay sample

Table 6: Results of robustness data					
Proposed variation	Peak areas	Theoretical plates			
Flow rate					
0.9 mL/min	5,386,971	4479			
1.0 mL/min	5,489,452	4759			
1.1 mL/min	5,478,984	3072			
0.9 mL/min	2,685,942	4508			
1.0 mL/min	2,623,598	3695			
1.1 mL/min	2,888,145	3072			
Mobile phase composition					
Less (50%)	5,369,821	3700			
Actual	5,689,452	4759			
More (70%)	5,478,529	3794			
Less (50%)	2,698,715	3312			
Actual	2,623,259	3211			
More (70%)	2,888,304	3247			
	Variation Flow rate 0.9 mL/min 1.0 mL/min 1.1 mL/min 0.9 mL/min 1.0 mL/min 1.0 mL/min 1.1 mL/min Mobile phase composition Less (50%) Actual More (70%) Less (50%) Actual	variation areas Variation areas Flow rate 5,386,971 0.9 mL/min 5,489,452 1.1 mL/min 5,478,984 0.9 mL/min 2,685,942 1.0 mL/min 2,623,598 1.1 mL/min 2,888,145 Mobile phase 5,369,821 Actual 5,689,452 More (70%) 5,478,529 Less (50%) 2,698,715 Actual 2,623,259			

the proposed method. The assay procedure was performed and the assay percentage was calculated as per the given formula.^[18] The value was found to be in good agreement with the labeled amounts, which confirms the suitability of the method for the analysis of the analytes, Rosuvastatin and Amlodipine, in pharmaceutical dosage forms.

Formulae:

Assay % =
$$\frac{AT}{AS} \times \frac{WS}{DS} \times \frac{DT}{WT} \times \frac{P}{100} \times \frac{AV}{LC} \times 100$$

Where

AT = Average area counts of sample preparation.

AS = Average area counts of standard preparation.

WS = Weight of working standard taken in mg.

DS = Weight of sample taken in mg.

DF = Dilution factor.

WT= Average weight.

P = Percentage purity of working standard.

The assay results were given in Table 7 and the chromatogram of assay sample is given in Figure 7.

CONCLUSION

The proposed reverse-phase HPLC method is sensitive and accurate and can be used for routine quality control analysis for the determination of rosuvastatin and amlodipine in its tablet dosage form. It can be seen from the results presented that the proposed procedure has good precision and accuracy. Results of the analysis of pharmaceutical formulations revealed that proposed methods are suitable for their analysis with virtually no interference of the usual additives present in the pharmaceutical formulations.

ACKNOWLEDGMENT

The authors wish to thank the management of School of Pharmacy, Anurag Group of Institutions, Venkatapur, Ghatkesar, Telangana, India, for providing necessary equipment for research, constant encouragement, praiseworthy inspiration, facilities, and support.

Table 7: Summary of assay results							
Analytes	Peak areas of standard	Mean peak area of standard	Peak areas of sample	Mean peak area of sample	Label claim (mg)	Amount found (mg)	% purity/ % assay
Rosuvastatin	5,401,466	5,388,158	5,386,083	5,363,315	10	9.9	99%
	5,446,288		5,382,363				
	5,316,721		5,321,498				
Amlodipine	2,843,567	2,852,191	2,830,177	2,808,339	5	4.9	98%
	2,866,874		2,840,718				
	2,846,132		2,754,122				

Asian Journal of Pharmaceutics • Oct-Dec 2018 (Suppl) • 12 (4) | S1308

Boggula, et al.: Simultaneous estimation of rosuvastatin and amlodipine in bulk and its formulation using RP-HPLC

CONFLICTS OF INTEREST

Authors declare that there are no conflicts of interest to disclose.

REFERENCES

- Rosuvastatin. Available from: http://www.drugbank.ca/ drugs. [Last accessed on 2018 Nov 30].
- 2. Amlodipine. Available from: http://www.chemicalbook. com. [Last accessed on 2018 Nov 30].
- 3. Rosudapin Coated Tablets. Available from: https://www. tabletwise.com/latvia/rosudapin-coated-tablet. [Last accessed on 2018 Nov 14].
- 4. Jampana PK, Varma BH, Raveendrababu G, Surekha PS, Praveen TK, Rao PS. Visible spectroscopic method for estimation of amlodipine besylate in tablets. Int J Pharm Chem Biol Sci 2014;4:173-7.
- Banerjee SK, Vasava N. Simultaneous estimation of amlodipine and rosuvastatin in combined bulk dosage forms by RP-HPLC using ultraviolet detection. Bull Pharm Res 2013;3:29-33.
- Turabi Z, Khatahbeh OA. Stability indicating RP-HPLC method development and validation for the determination of rosuvastatin (calcium) in pharmaceutical dosage form. Int J Pharm Sci Drug Res 2016;6:154-9.
- 7. Mukthinuthalapati MA, Bukkapatnam V, Bandaru SP. Stability indicating liquid chromatographic method for the simultaneous determination of rosuvastatin and ezetimibe in pharmaceutical formulations. Adv Pharm Bull 2014;4:405-11.
- EL-Fatatry HM, Habib A, Hammad SF, Badran AI. Development and validation of quality by design optimized reversed phase HPLC method for simultaneous estimation of telmisartan and amlodipine. Int J Biol Pharm Res 2013;4:697-701.
- 9. Al-Akkam EJ, Rasool AA, Badwan AA, Qinna N. Development and validation of a sensitive and accurate method for determination of atorvastatin and rosuvastatin in rat plasma by reversed-phase high performance liquid chromatography with UV detection. Int J Pharm Pharm

Sci 2013;5:211-9.

- Pandya CB, Channabasavaraj KP, Chudasama JD, Mani TT. Development and validation of RP-HPLC method for the estimation of rosuvastatin calcium in bulk and tablet dosage form. Int J Pharm Sci Rev Res 2010;5:82-6.
- Draft ICH. Guidelines on Validation of Analytical Procedures Definitions and terminology. Federal Register, 60. Switzerland: IFPMA; 1995. p. 1126.
- 12. Available from: https://www.ema.europa.eu/documents/ scientific-guideline/ich-q-2-r1-validation-analyticalprocedures-text-methodology-step-5_en.pdf. [Last accessed on 1995 Jun].
- Haque MA, Bakshi V, Boggula N. Analytical method development and validation of amlodipine in human plasma by using liquid chromatography–mass spectrometry/mass spectrometry. Asian J Pharm Clin Res 2018;11:393-7.
- ICH Q2A. Validation of Analytical Methods, Definitions and Terminology. ICH Harmonized Tripartite Guideline; 1999.
- 15. Boggula N, Kaveti VS, Kema VK, Dandamudi SP. Validation of RP-HPLC method for the estimation of dolasetron in injection. Int J Pharm Chem Biol Sci 2018;8:210-7.
- Dandamudi SP, Battineni JK, Bakshi V, Peddapalli H, Boggula N. Validated RP-HPLC method for estimation of daclatasvir in tablet dosage form. Int J Adv Res Dev 2018;3:1170-4.
- 17. Kamra M, Diwan A, Sardana S. Development and validation of reversed-phase high performance liquid chromatography method for the simultaneous estimation of benzoyl peroxide and resveratrol. Int J Pharm Biol Arch 2018;9:113-21.
- 18. Rajawat JS, Dadeech P, Ankalgi AD, Ranawat MS, Panwar MS. Method development of ramipril and atorvastatin calcium capsule by using simultaneous equation method and absorbance ratio method. Asian J Pharm 2014;8:271-4.

Source of Support: Nil. Conflict of Interest: None declared.