Prediction of Prospective Anti-Parkinson Phytochemicals using Prediction of Activity Spectra of Substances Software to Justify 3R’s Ethics of In Vivo Evaluation

Pankaj Prashar¹, Rishi Mahajan², Meenu Mehta¹, Saurabh Satija¹, Manish Vyas¹, Neha Sharma¹, Navneet Khurana¹

¹Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India, ²Department of Biotechnology, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA

Abstract

Background: Parkinson’s disease (PD) is a chronic progressive devastative disorder of neurons characterized by a muscle rigidity, tremors, bradykinesia etc. In present scenario, it is affecting more than 1% population above 50 years of age and hence is an important concern in society. Advancement in research field in recent decades has led to upsurge the use of animals for evaluation of new drugs. Objective: In contemplation of upward trend in use of animals, PASS (prediction of activity spectra of substances), a web tool, provides an informative prediction data for different pharmacological activity of compounds without using the animals which justifies the 3R’s ethics (Reduction, Replacement, and refinement) to be followed for in vivo evaluation. Methods: For prediction of pharmacological activities of anti-parkinson compounds, canonical smiles of phytochemicals were obtained from Pubmed and used in the software for prediction of relevant pharmacological activity so that phytochemicals, showing best results can be further explored for in vivo evaluation against PD. Using PASS online software, biological activity spectra for nine different activities related to Parkinson’s disease for selected phytochemicals was predicted and compared with marketed compounds. Result: Out of selected phytochemicals, scopolamine and atropine have shown highest antiparkinsonian activities. Piperine was also found to have antiparkinsonian activity. Elaeocarpine, harmine and oxyresveratrol have found to have comparable activity for this condition. Conclusion: This article describes the utility of PASS to justify the 3R’s concept which is to be followed for the further in vivo exploration of compounds.

Key words: Anti-Parkinson phytochemicals, PASS software, 3R’s ethics

INTRODUCTION

Parkinson’s disease (PD) is named after Dr. James Parkinson, who was the first to identify conditions and record symptoms of PD. PD is a progressive neurodegenerative disorder which affects the substantia nigra pars compacta region of the brain, characterized by decrease in dopamine level in the brain. It is reported that 80% of dopamine level lost during the Parkinson’s. It is the second most devastative neurological disease, primarily affects the persons with age 50 and above. Currently, some of the reported clinical symptoms are muscle rigidity, stoop posture, bradykinesia, and resting tremors of extremities.¹ ² ³ The underlying pathology of PD is increased oxidative stress, mitochondrial dysfunction, and deposition of alpha-synuclein (termed as Lewy bodies and dystrophic neurites), a misfold protein in the brain causing microglia activation followed by neuroinflammation and neurotoxicity.⁴ ⁵ ⁶ ⁷ The etiology of PD is still unknown, but some factors such as age, environment, genetics, and medication have been reported. A large number of synthetic drugs are available for drug therapy [Figure 1] but have a wide number of side effects, such as nausea, vomiting, hallucinations,

Address for correspondence:
Dr. Neha Sharma, Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144 411, Punjab, India. E-mail: c4nehagautam@gmail.com

Received: 24-03-2019
Revised: 28-04-2019
Accepted: 01-05-2019
and convulsions. Moreover, they are known to provide symptomatic relief only, i.e., not able to cure the underline cause of PD.\textsuperscript{[8-10]}

Because of concern about side effects of synthetic medicines, there is serious consideration and research for the natural medicines in the last few decades. Antioxidant and neuroprotective actions of natural medicines are utilized in the treatment of PD.\textsuperscript{[11]} A large number of phytochemicals have been reported to be effective in \textit{in vivo} and \textit{in vitro} models of PD but fail to enter in the mainstream of drug development due to lack of information.

PASS, a computer-based software program, provides information regarding different biological activities of chemical compounds on the basis of their chemical structures. The current version of PASS can predict more than 3750 biological effects, biochemical modes of action, specific toxicities, and metabolic terms based on two-dimensional structures or canonical simplified molecular-input line-entry system (SMILES), with a mean accuracy of almost 95\%. It predicts activity in terms of probabilities; probable activity (Pa) and probable inactivity (Pi). The values vary from 0.000 to 1.000. The activity of compound is considered only if Pa > Pi; moreover, compounds having Pa activities >0.7 are considered to have high pharmacological actions. Similarly, compounds having Pa values <0.7 have less probability of observing the activity.\textsuperscript{[12-15]} The present study incorporates the use of PASS for exploration of the pharmacological potential of selected phytochemicals in the treatment of PD, with respect to various disease-associated targets.

**RESULTS AND DISCUSSIONS**

Using PASS online software, biological activity spectra for nine activities of selected phytochemicals and marketed compound were predicted. These activities are as follows:

- Dopamine precursors
- Caspase 3 inhibitors
- Central anticholinergics
- Free radical scavengers
- Nootropic activity
- Dopamine-release stimulants
- Monoamine oxidase (MAO) inhibitors
- N-methyl D-aspartate (NMDA) receptor antagonists
- Antiparkinsonian.

The biological activity spectra for different activities for phytochemicals and marketed compound, i.e., safinamide, are represented in Table 2.

PD is a progressive neurodegenerative disorder, which to date has no effective treatment. Search is generally still going on around the world in this stream. Several compounds have passed pre-clinical trials but are able to enter the clinical trials stage, due to lack of sufficient informative data. PASS is an online program that can be used by anyone after completing the free registration, which predicts the biological activity of a chemical compound on the basis of chemical composition and interaction with different targets. This program provides information that a particular compound can be useful in a particular disease.

One marketed standard drug (safinamide) for PD was selected to compare with various phytochemicals. Pharmacological
activity for all phytochemicals was tested for nine activities, as shown in Figure 2.

It was found that safinamide has less dopaminergic precursor activity as compared to phytochemicals [Figure 3]. Of the phytochemicals, oleuropein has high value for dopamine (DA) precursor activity while phytochemicals such asrudrakine, huperzine A, nobiletin, iso rhynchophylline, elaecarpidine, creatine, morin, apigenin, asiaticoside, and piperin were zero DA precursor activity [Figure 3].

The DA precursor activity for various phytochemicals in decreasing sequence was oleuropein > curcumin > oxyresveratrol > glutathione.
Table 2: Probable activity predicted by prediction of activity spectra of substance software

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Dopamine precursor Pa</th>
<th>Caspase 3 inhibitor Pa</th>
<th>Anticholinergic Pa</th>
<th>Free radical scavenger Pa</th>
<th>Nootropic activity Pa</th>
<th>MAO inhibitor Pa</th>
<th>Dopamine release stimulant Pa</th>
<th>NMDA receptor antagonists Pa</th>
<th>Antiparkinsonian Pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safinamide[^96]</td>
<td>0.032</td>
<td>0.109</td>
<td>0</td>
<td>0</td>
<td>0.614</td>
<td>0.223</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Atropine[^97]</td>
<td>0</td>
<td>0</td>
<td>0.777</td>
<td>0</td>
<td>0.494</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.973</td>
</tr>
<tr>
<td>Harmine[^8]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.187</td>
<td>0.608</td>
<td>0.215</td>
<td>0.188</td>
<td>0.079</td>
<td>0.173</td>
</tr>
<tr>
<td>Curcumin[^19]</td>
<td>0.047</td>
<td>0</td>
<td>0</td>
<td>0.771</td>
<td>0.552</td>
<td>0.118</td>
<td>0.433</td>
<td>0.107</td>
<td>0</td>
</tr>
<tr>
<td>Scopolamine[^20]</td>
<td>0</td>
<td>0</td>
<td>0.733</td>
<td>0</td>
<td>0.373</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.983</td>
</tr>
<tr>
<td>Oxyresveratrof[^19]</td>
<td>0.045</td>
<td>0.145</td>
<td>0</td>
<td>0.640</td>
<td>0.383</td>
<td>0.240</td>
<td>0.388</td>
<td>0.202</td>
<td>0.262</td>
</tr>
<tr>
<td>Oleuropein[^19]</td>
<td>0.050</td>
<td>0</td>
<td>0</td>
<td>0.614</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N</td>
<td>0</td>
</tr>
<tr>
<td>Quercetin[^21]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.816</td>
<td>0.341</td>
<td>0.572</td>
<td>0.216</td>
<td>0.109</td>
<td>0</td>
</tr>
<tr>
<td>Glutathione[^22]</td>
<td>0.035</td>
<td>0.132</td>
<td>0</td>
<td>0.442</td>
<td>0.399</td>
<td>0</td>
<td>0.234</td>
<td>0.101</td>
<td>0</td>
</tr>
<tr>
<td>Rudrakine[^23]</td>
<td>0</td>
<td>0</td>
<td>0.616</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.211</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Huperzine A[^24]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.977</td>
<td>0</td>
<td>0.196</td>
<td>0.493</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nobleitin[^25]</td>
<td>0</td>
<td>0</td>
<td>0.569</td>
<td>0.742</td>
<td>0.513</td>
<td>0.489</td>
<td>0.221</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iso rynchophylline[^26]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elaeocarpidine[^27]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.409</td>
<td>0</td>
<td>0.183</td>
<td>0</td>
<td>0.177</td>
<td>0</td>
</tr>
<tr>
<td>Creatine[^28]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.181</td>
<td>0</td>
<td>0</td>
<td>0.239</td>
<td>0.250</td>
<td>0</td>
</tr>
<tr>
<td>Morin[^29]</td>
<td>0</td>
<td>0</td>
<td>0.491</td>
<td>0.766</td>
<td>0</td>
<td>0.544</td>
<td>0.217</td>
<td>0.113</td>
<td>0</td>
</tr>
<tr>
<td>Apigenin[^30]</td>
<td>0</td>
<td>0</td>
<td>0.598</td>
<td>0.719</td>
<td>0.475</td>
<td>0.549</td>
<td>0.259</td>
<td>0.148</td>
<td>0.129</td>
</tr>
<tr>
<td>Asiaticoside[^31]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.197</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Piperin[^11]</td>
<td>0</td>
<td>0</td>
<td>0.393</td>
<td>0.185</td>
<td>0.350</td>
<td>0.148</td>
<td>0</td>
<td>0</td>
<td>0.469</td>
</tr>
</tbody>
</table>

NMDA: N-methyl D-aspartate, MAO: Monoamine oxidase, Pa: Probable activity
Safinamide was found to have less caspase 3 inhibitory activity. Of the phytochemicals, only two were showing caspase 3 inhibitory activity. Oxyresveratrol has high caspase 3 inhibitory activity and glutathione with the least caspase 3 inhibitor activity [Figure 4]. Similarly, anticholinergic activity for all phytochemicals was determined. Safinamide was found to have maximum anticholinergic activity as compared to phytochemicals. The pattern for anticholinergic activity for phytochemicals is scopolamine > rudrakine = apigenin > nobiletin > morin > piperin [Figure 5].

Safinamide was found to have no free radical scavenging activity. Phytochemicals for free radical activity follow the pattern quercetin > curcumin = morin > nobiletin > apigenin > asiaticoside > harmine = creatine = piperin as shown in Figure 6. In the same manner, safinamide has no nootropic activity, when compared with phytochemicals. Huperzine A has the highest nootropic activity. Other phytochemicals having nootropic activity as follows: huperzine A > harmine > curcumin > nobiletin = apigenin > glutathione = elaeocarpidine > scopolamine > quercetin > piperin [Figure 7].
In MAO activity, safinamide has the highest activity than phytochemicals. Quercetin, morin, and apigenin were found to have equivalent MAO inhibitory activity followed by nobiletin, oxyresveratrol, harmine, piperin, and curcumin, respectively [Figure 8]. In contrast, safinamide has less DA-releasing stimulant activity when compared with phytochemicals. The pattern followed by phytochemicals for DA-stimulant activity is curcumin >oxyresveratrol >apigenin >glutathione =creatine >quercetin =nobiletin =morin [Figure 9].

In case of NMDA receptor antagonist activity, both safinamide and phytochemicals have no significance activity except huperzine A, which is found to have 0.5 Pa value. Some of phytochemicals have activities as follows: creatine >oxyresveratrol >apigenin >curcumin =glutathione =quercetin =morin >harmine [Figure 10].

Standard drug safinamide was found to have no antiparkinsonian activity. Of phytochemicals, scopolamine and atropine have the highest antiparkinsonian activities.
Piperin was also found to have antiparkinsonian activity up to some extent. Elaeocarpidine, harmine, and oxyresveratrol have values closer to each other [Figure 11].

CONCLUSION

From the above study, PASS, an online software, helps in the prediction of pharmacological action of the phytochemicals. This software also aids 3R’s ethics for animal usage before in vivo evaluation, which reduces money, time, as well as number of animals.

REFERENCES


Source of Support: Nil. Conflict of Interest: None declared.