Fabrication, Validation, and Stability Analysis of *Melaleuca alternifolia* Oil-in-water Microemulsion for Improved Transdermal Application

Arushi Pant¹, Kanupriya Jha¹, Shriya Agarwal¹, Harleen Kaur², Manisha Singh¹

¹Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India, ²Department of Biotechnology, Amity University, Noida, Uttar Pradesh, India

Abstract

Aim: The aim of the study was to develop oil-in-water microemulsion (ME) system for *Melaleuca alternifolia* for targeting skin disorders. **Materials and Methods:** The formulation of ME system was done through the water titration method, which involved various oils, water, surfactants, and cosurfactants. The existence zones of ME were determined by constructing ternary phase diagrams, where surfactants and cosurfactants (S_{max}) were taken in different ratios along with different combinations of oil and S_{max}. Quantitative estimation of tea tree oil (TTO) was performed using gas chromatography-mass spectrometry followed by total terpenoid estimation, and thereafter, solubility studies of TTO were performed using various excipients. TTO-ME was fabricated and characterized using modern characterization techniques (DLS, transmission electron microscopy, and Fourier transform infrared) along with statistical validation and *in vitro* drug release assessment. **Results and Discussion:** The optimized TTO loaded MEs (TTO ME) showed the particle size range between 32 and 160 nm with poly dispersibility index of 0.297 and zeta potential of −3.19 mv with almost spherical morphology. The optimized formulation showed the sustained release of the therapeutic compound and was found to be stable at room temperature for 1 year, suggesting being a promising formulation against dermal infections. **Conclusion:** TTO was successfully loaded in thermodynamically stable ME system which enhanced its permeation through the transdermal route. Therefore, a novel drug delivery system was introduced, which can be studied on various *in vitro* and *in vivo* models further to establish its better therapeutic efficacy for various skin disorders.

Key words: Particle size, permeability kinetics, rheology, stability, therapeutic index

INTRODUCTION

The use of essential oils (EOs) as therapeutics is considered as an important medicinal practice in most of the ancient civilization till present, as it indistinctively intertwines the religious and the therapeutic roles.[¹] Similarly, Chinese traditional medicinal system considered EOs as the medicine which not only benefits the health but also governs the consciousness of the human mind too, with immense effects on the deepest level of the body that enhances immunity.[²] Their therapeutic benefits widely range from being a potential antifungal, antimicrobial, antidepressant, antiviral, and antiseptic agents to the elevator of many central nervous system related behaviors such as anxiety, learning, memory, attention, arousal, relaxation, sedation, and sleep. Furthermore, the effects on mood, pain, and perception too are being influenced by the use of EOs along with giving calming and soothing effects to the nerve cells, thus helping in the treatment of epilepsy, stress, and dementia too. They are the low molecular weight hydrophobic liquids, extracted usually from plants which are rich in bioactive phytocompounds exhibiting various therapeutic properties.[³] Due to their chemical structures, EOs are listed under the class of highly volatile compounds exhibiting higher concentration of natural constituents and exclusive

Address for correspondence:
Dr. Manisha Singh, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India. Phone: +91-9910624908.
E-mail: manishasingh1295@gmail.com

Received: 04-04-2019
Revised: 14-06-2019
Accepted: 06-07-2019
aromatherapy characteristics rich secondary metabolites ranging from antimicrobial, antioxidant, antiseptic, anti-inflammatory, and antidepressants.[4,5]

One such EO with immense therapeutic benefits, extracted from the leaves and twigs of native Australian shrub Melaleuca alternifolia is tea tree oil (TTO).[6,7] It is specifically used in alleviating inflammation and promotes wound healing along with enormous antimicrobial and antioxidant properties that help in treating deep-rooted infections of the skin including eczema, acne, and ringworm.[8,9] TTO has a well-defined composition and contains 40.1% of terpinene-4-ol, 23% of γ-terpinene, 10.4% of α-terpenene, and 5.1% of 1,8-cineole as the major phytoconstituents and 3.1% of terpinolene, 2.9% of p-Cymene, 2.6% of α-Pinene, 2.4% of α-terpineol, and 1% of limonene as the minor ones.[6,10] It was quite interesting to know that EOs have higher abilities to penetrate easily into the dermal layers by three different dermal routes, that is, either by trans follicular, transcellular or intercellular route.[11] Although most of the EOs, including TTO, exhibit highly valuable therapeutic solutions, their efficacy is equally limited due to their certain physiological factors.[12] These factors are directly related with their structural arrangements, where most of the EOs have rich content of hydrocarbons, especially the terpenes including monoterpenes, diterpenes and sesquiterpenes, and oxygenated compounds such as carbonyls and alcohols which tends to be highly volatile and other phytoconstituents such as 1–8 cineole, reported to cause severe side effects such as redness, itching, inflammation, and rashes, if applied directly.[13,14] Thus, their direct application on skin limits their required therapeutic effect and effective resident period on skin. They are also reported to be chemically sensitivity; hence, they got decomposed easily by direct exposure to heat, light, humidity, and oxygen.

Pertaining to all the listed concerns and to enhance the overall therapeutic efficacy of M. alternifolia an efficient and biodegradable nanocarrier system was required since long that would eventually support in overcoming the problem of volatility, bioavailability and increase its effective resident time at the target site (skin).[15,16] However, various nano-sized carrier systems are used such as microemulsions (MEs), nanoemulsions, and nanoparticles for transdermal drug delivery. Although these carrier systems have their unique properties out of them all, MEs are reported to be the most efficacious and stable formulation for targeting the skin infections.[17] MEs are specifically noted to enhance the deeper impregnation of the EO’s inside the skin, and they usually sustain the compound release character leading to improved shelf life, and bioavailability.[18] Furthermore, ME loaded formulations show a higher degree of oil penetration into deeper dermal layers apart from showing higher spreading ability, impregnation, hydration, and skin flux.[19]

MEs are known to play a crucial role in treating skin disorders such as acne, fungal infections, psoriasis, eczema, and athlete foot as its well-defined characteristics, thermodynamic stability, longer shelf life makes it an ideal candidate for various therapeutic application against these skin conditions.[20] Apart from this, they do exhibit a higher degree of transdermal drug delivery and enhances skin penetration due to their nanometric size range and surface polarity to seep deep down to give the desired effect.[21] Moreover, ME system altogether with its excipients is reported to reflect its antimicrobial, antioxidant properties including a synergistic effect with the drug, i.e. TTO in eliminating various skin ailments.[22,23] Therefore, in the present study, M. alternifolia loaded oil-in-water (O/W) ME system was designed to enhance its stability and therapeutic efficiency.

MATERIALS

For the formulation pure M. alternifolia oil was purchased from Forest Glen Organics, Sydney, Australia, Eucalyptus oil from Oriental Traders, Karnataka, India. Other oils such as clove, olive, castor oils, and along with ethanol and methanol were purchased from HiMedia, India, whereas linseed oil and isopropyl myristate (IPM), sodium carbonate, Tween-20, Tween-80, span-80, span-20, and PEG-400 were procured by Sigma-Aldrich Ltd., USA. All the other chemicals used in the experiment were of analytical grade.

METHODS

Quantitative analysis of M. alternifolia

The M. alternifolia is known to possess a high content of terpenes including monoterpenes, diterpenes, sesquiterpenes, and oxygenated compounds such as carbonyls, alcohols, and phenols which tend to be highly volatile and other phytoconstituents like 1–8 cineole. Therefore, to determine the total quantity present in the standard extract of M. alternifolia oil, quantitative analysis for the same was done by both gas chromatography-mass spectrometry (GC-MS) and terpenoid estimation method.

Quantitative estimation of M. alternifolia oil by GC-MS

Quantification and identification of major components of TTO were performed by GC-MS which is known to be a rapid, well-marked and most accurate quantitative determination method reported for yield and quality estimation of Melaleuca oils.[24] As reported in many studies the estimation of M. alternifolia exhibits a high percentage of monoterpene group, specifically by terpinene-4-ol (~48%), neo-dihydrocarveol (~7%), and 1,8-cineole (~6%). The stock sample preparation was done by mixing 1% (v/v) of TTO in acetone and injected (1µL) to GC-MS unit (GC-6890N with a mass selective detector 5973 (quadrupole mass analyzer) from Agilent Technologies (Thailand) Co., Ltd. Bangkok,
Terpenoids are a huge family of terpenes, diterpenes, and sesquiterpenes which are the most numerous and structurally diverse, naturally occurring phytocompounds exhibiting pharmacological activities. The presence of the total terpenoid content in the TTO was determined by the spectrophotometric method. Linalool was taken as standard and its different concentrations (10–50 µl/ml) were prepared in methanol. Then, 100 µl of the test sample or the standard was mixed with 1.5 ml of chloroform and vortexed at 1792 g for 5 min properly. Thereafter, 100 µl of sulfuric acid was added and incubated in the dark for 5 min at retention time (RT). The reddish-brown precipitate was formed which was further dissolved by 1.5 ml of 95% (V/V) methanol completely, and the absorbance was taken at 538 nm. Samples were analyzed in triplicates.

Solubility studies of TTO in various excipients

Since the major therapeutic class of phytocompounds found in TTO is terpenoids such as – terpinen-4-ol, α-terpinene, terpinolene, α-Terpinene, and many more. Thus, suitable excipients were selected based on the highest terpenoid concentration. The solubility of TTO was examined in different oils (eucalyptus oil, clove oil, olive oil, castor oil and linseed oil, and IPM), surfactants (Tween-20, Tween-80, span-80, span-20, and PEG-400), and cosurfactant (ethanol and methanol) by dissolving an excess amount of the TTO (1:1) in each of the selected oils, surfactants, and cosurfactants in a test tube and vortexed the same at room temperature in a shaker for 72 h to get to the equilibrium. The equilibrated samples were then removed after 72 h, centrifuged 1008 g for 15 min and quantified spectrophotometrically at 538 nm. Thereafter, the excipients with highest terpenoid quantity were chosen for further fabrication of ME system.

Fabrication and optimization of TTO-ME (TTO loaded ME system)

The clear selected formulations after aqueous titration blending were further tested for their thermodynamic stability by subjecting them for the heating cooling cycle, centrifugation test (CFT), freeze-thaw cycle (FTC), and dispersibility testing (DT). These testings were performed to observe any kind of phase separation, turbidity or precipitation, phase inversion or creaming in the TTO-ME samples during these experiments. In heating-cooling cycle (HCC) cycle, the selected formulations were exposed to variable temperatures such as 4°C–45°C for 48 h at each temperature, alternatively for six cycles. Then, during CFT, the formulations were centrifuged at 1792 g for 30 min. Then, they were followed by FTC where formulations were subjected to −21°C–+25°C again for 48 h at each temperature. Finally, the selected microemulsions were dispersed in excess of aqueous medium (25 ml) to ensure its dispersibility ability.
Physiological parameter evaluation

pH
The pH value of any sample represents the value of hydrogen ion existence in solutions, representing the logarithmic reciprocation of hydrogen ion concentration in dispersed samples. The pH of all the selected TTO loaded ME combination was determined using a pH meter (WTW A061414035) at room temperature.

Viscosity
Viscosity is the measure of fluid friction or the internal friction of the fluid layer caused due to the movement of one on the other layer. To follow the viscous behavior of the MEs, flow time was measured for drug-loaded MEs. Hence, the viscosity of the sample was determined by the use of a Brookfield viscometer and measuring the time for fall of the liquid in the viscometer.

Density
Similarly, the density of the formulated ME was determined by Jammy et al using specific gravity or pycnometer bottle, and the final density was calculated by:

\[
\text{Density} = \frac{\text{Weight (g)}}{\text{Volume (ml)}}
\]

Conductivity
Electrical conductivity of the colloidal solution is a measure of the charge present on the dispersed particles in relation to its dispersion medium which was analyzed by the conductometer (CM 180, Elico, India) at constant frequency of 1 Hz by recording the charge on the optimized TTO loaded ME formulation in microsiemens (mS).

Optical transparency
The optical transparency of the TTO loaded ME was determined by inspecting the sample in clear and transparent container under the presence of good light against reflection into the eyes and viewed against black and white illuminated background at room temperature. The homogeneity and optical isotropy of pure and TTO loaded microemulsions were then examined by a polarimeter (ATAGO, AP-100 Automatic Polarimeter).

Surface tension
Surface tension is the rigidity of the surface of an emulsion caused by the attraction of the particles in the surface layer, which tends to minimize the surface area. The measurements were made at 25 ± 0.01°C under atmospheric pressure by Torsion Balance (White Elec. Inst. Co. Ltd.) equipped with a ring having a circumference of 4.0 cm.

Particle size (PS) analysis, polydispersibility index (PDI), and zeta potential (ZP) analysis
PS analysis of dispersed droplets of the colloidal solution gives an average of all the PS. It is done to project the approximate size of the formulated ME and their homogeneity in the system. PS analysis of the optimized freshly prepared diluted sample (1:50) was determined by the by photon correlation spectroscopy and ZP of the same sample was analyzed by laser Doppler anemometry, using a Malvern Zetasizer® 3000 HS. ZP analysis is done to incur the surface charge on the formulated ME.

Transmission electron microscopy (TEM)
TEM is used to analyze and validate the morphological and structural framework of the colloidal suspension. It is used to generate the image of the sample to determine the actual size of the ME. The basic microstructure of the optimized formulation was analyzed using TECHNAI 200 Kv TEM (Fei, Electron Optics). The sample was prepared by diluting it with water in 1:100 ratios and then a drop from the same sample was placed on a pure thin bar mesh TEM grid with 2% phosphotungstic acid. The drop was blotted with filter paper until reduced to a thin film.

Fourier transform infrared (FT-IR) analysis
The FT-IR analysis is performed to determine the functional group present on the surface of the colloidal suspension. FT-IR analysis of the optimized ME (TTO ME), TTO, and only ME was done through Perkin Elmer spectrum 1 FT-IR system. The samples were mixed thoroughly with potassium bromide (KBr), which is the commonly used alkali halide to make KBr pellets for scanning in the grid. The frequency ranges were measured as wave numbers typically over the range from 4000 to 600 cm⁻¹.

Statistical analysis
The PS analysis results of formulated ME samples were further subjected for correlation analysis and were used to study the correlation between PS and PDI with the content of O (oil), S (surfactant), and W (water).

Permeability kinetics
In vitro drug release assessment assumes greater significance in serving as an indicator of product quality and performance as it is used to investigate and establish product behavior during the various stages of drug product development, as well as life cycle management providing the pattern of compound release and behavior of dosage forms, product quality, and performance. Thus, to predict the pattern of drug permeation through dialysis membrane from TTO and TTO-ME by Franz diffusion assembly was done. The released samples of TTO and TTO – ME (1 ml) in the receptor compartment were collected after every 30 min interval till 12 h. The concentration of terpinene-4-olin both (TTO and TTO-ME) samples were further analyzed by GC-MS method and then the percentage of drug release was calculated by:
Cumulative % release = \frac{A_{TS} \times P (RT – 1) + PT}{T_V}

Where, \(A_{TS}\) = Total volume of test sample withdrawn from the receptor compartment (1 ml); \(P (RT – 1)\) = The percentage release of TTO prior to time “T”; \(PT\) = The percentage release of TTO at time “T”; \(T_V\) = Total volume of buffer in receptor cell (12 ml).

Stability testing of TTO-ME

The stability testing of TTO and TTO-ME was performed by the method as reported by Singh et al., 2017.\(^{45}\) Since the retention of the essential terpenoid group of TTO was important for maintaining the therapeutic efficacy of the formulation; hence, the optimized formulation (TTO-ME) was tested initially after formulation and then after storing it at room temperature (37°C) for 1 year by terpenoid estimating assay as discussed above.\(^{46}\) In this assay, the stability of TTO and TTO-ME at variable concentrations (100–1000 µl/ml) was tested and compared it with its terpenoid content.\(^{47}\)

RESULTS AND DISCUSSION

Quantitative estimation of *M. alternifolia* by GC-MS method

The GC-MS estimation of TTO reflected the presence of essential therapeutic categories, as shown in Figure 1, where initial compounds such as α-pinene, α-terpinene, D-Limonene, and 1,8-cineole were released between 4 and 8 min (RT). These components all together form around 18–20% content in TTO. Further, the major phytochemicals terpinene-4-ol and γ-terpinene, which comprises around 65% are reflected between 10 and 15 min (RT). This result scanning was further utilized for the *in vitro* phytocompound (terpinene-4-ol) release and its analysis, as depicted in Table 1.

Solubility analysis of the ME excipients

The solubility of TTO was examined in different oils (eucalyptus oil, clove oil, olive oil, castor oil, and linseed oil, and IPM), surfactants (Tween-20, Tween-80, span-80, span-20, and PEG-400), and cosurfactants (ethanol and methanol), as shown in Table 2. After the solubility of all the excipients was analyzed by terpenoid estimation eucalyptus oil, Tween 80 and ethanol were selected as oil, surfactant, and cosurfactant phases, respectively, due to their maximum solubility and higher terpenoid content, in comparison to other excipients.

HLB system analysis

After the solubility analysis, comparing the HLB value plays an important role in determining the longer stability of the formulation as many studies exhibited that, when a low concentration of oil taken with a higher concentration of \(S_m\) it yields a clear and stable ME system. Moreover, it has been observed that O/W ME system development requires the HLB values of excipients between 9 and 17. Therefore, the HLB value of eucalyptus oil (9.9) and Tween 80\(^{15}\) were found to be required range along with the ethanol that was found to be in neutral range so not affecting the balance much and distill water as the aqueous phase.
Preparation of microemulsions

With the selected excipients (oil – eucalyptus oil, surfactant – Tween 80, and cosurfactant – ethanol) all the 6 \(S_{\text{mix}} \) (1:1–6:1) combinations were formulated with varying oil:\(S_{\text{mix}} \) ratios as shown in Table 3 and were further plotted on triplot for their characteristics evaluation.

Ternary phase studies

The multicomponent system of ME was represented by three spatial dimensions illustrated on the ternary system graphical structure where the equilibrium between all three phases is represented by a set of three lines or points which were monovariant. Since the equilibrium state was attained, when there is a minimal free energy available on each component in each phase, hence leading to optimization of different ratios of each component with another one on the basis of phase behavior, i.e. limiting coalescence, and optically isotropic phenomenon.\(^{[48,49]}\) Hence, constructing the pseudoternary phase with all three constituents can be studied with each edge of the diagram as 100% of the respective constituents. With increasing surfactant concentration, there is a visible difference observed in two phases. The pseudoternary phase

| Table 1: Summarization of percentage composition of Melaleuca alternifolia oil from GC-MS analysis |
|---------------------------------|-----------------|-----------------|
| **Components of Melaleuca alternifolia** | **Chemical structure** | **Retention time** | **Composition (%)** |
| \(\alpha \)-pinene | ![Chemical structure of \(\alpha \)-pinene] | 5.374 | 2.4 |
| \(\alpha \)-terpinene | ![Chemical structure of \(\alpha \)-terpinene] | 7.623 | 10.5 |
| D-Limonene | ![Chemical structure of D-Limonene] | 8.018 | 0.9 |
| 1,8-cineole | ![Chemical structure of 1,8-cineole] | 8.087 | 4.9 |
| \(\gamma \)-terpinene | ![Chemical structure of \(\gamma \)-terpinene] | 9.151 | 22.6 |
| \(\alpha \)-terpinolene | ![Chemical structure of \(\alpha \)-terpinolene] | 10.250 | 2.9 |
| 4-terpineol | ![Chemical structure of 4-terpineol] | 14.575 | 40.6 |
| \(\alpha \)-terpineol | ![Chemical structure of \(\alpha \)-terpineol] | 15.010 | 2.6 |

GC-MS: Gas chromatography-mass spectrometry
Pant, et al.: M Alternifolia microemulsion for transdermal application

Asian Journal of Pharmaceutics • Jul-Sep 2019 • 13 (3) | 258

Table 2: The solubility estimation of all the excipients (oil, surfactants, and cosurfactants) selected based on hydrophilic-lipophilic balance value by terpenoid estimation in pure Melaleuca alternifolia oil

<table>
<thead>
<tr>
<th>Solubility estimation of terpenoid content (µl/ml) in various excipients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oils</td>
</tr>
<tr>
<td>Eucalyptus oil=17.02±1.5</td>
</tr>
<tr>
<td>Clove oil=7.1±0.03</td>
</tr>
<tr>
<td>Olive oil=9.63±0.05</td>
</tr>
<tr>
<td>Castor oil=3.87±1.48</td>
</tr>
<tr>
<td>Linseed oil=5.62±0.07-</td>
</tr>
<tr>
<td>IPM=16.39±0.2</td>
</tr>
</tbody>
</table>

IPM: Isopropyl myristate

Table 3: The clear, nonturbid titration ratios of S_mix and oil: S_mix ratios of the selected combinations of excipients

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Combinations</th>
<th>S_mix ratio</th>
<th>Clear oil: S_mix ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Eucalyptus oil+tween 80+ethanol (ETE-A)</td>
<td>1:1</td>
<td>(1:9), (2:8)</td>
</tr>
<tr>
<td>2.</td>
<td>Eucalyptus oil+tween 80+ethanol (ETE-B)</td>
<td>2:1</td>
<td>(1:9), (2:8), (3:7), (4:6)</td>
</tr>
<tr>
<td>3.</td>
<td>Eucalyptus oil+tween 80+ethanol (ETE-C)</td>
<td>3:1</td>
<td>(1:9), (2:8), (3:7), (4:6)</td>
</tr>
<tr>
<td>4.</td>
<td>Eucalyptus oil+tween 80+ethanol (ETE-D)</td>
<td>4:1</td>
<td>(1:9), (2:8), (3:7), (4:6)</td>
</tr>
<tr>
<td>5.</td>
<td>Eucalyptus oil+tween 80+ethanol (ETE-E)</td>
<td>5:1</td>
<td>(1:9), (2:8), (3:7)</td>
</tr>
<tr>
<td>6.</td>
<td>Eucalyptus oil+tween 80+ethanol (ETE-F)</td>
<td>6:1</td>
<td>(1:9), (2:8), (3:7)</td>
</tr>
</tbody>
</table>

Diagram depicting that the clear titration zones of all the six combinations eucalyptus oil + tween 80 + ethanol (ETE) (ETE-A, ETE-B, ETE-C, ETE-D, ETE-E, and ETE-F) were plotted, as shown in Figure 2.

Thermodynamic stability testing

Thereafter, thermodynamic stability analysis with all of the six combinations of M. alternifolia oil was tested for physical stability by subjecting them to four-step analytical process, they underwent HCC, CFT, FTC, and DT and observed for any phase separation, creaming, cracking, turbidity, or coagulation phenomenon. After the thermodynamic stability testing, two formulations ETE-B and ETE-C passed the different stages of tests, visual inspections and attained Grade “A” and were further subjected for the next level of characterization to study their physiological, morphological, and structural concurrence.

Characterization of M. alternifolia loaded ME

PS, PDI, and ZP analysis

PS analysis was performed to project the approximate size of the optimized formulation (ETB – C) along with its homogeneity of the particles in the ME system, as represented in Figure 3. Furthermore, ZP was done to incur the surface charge present on the same and is depicted in Figure 4.[51] The result of ETB – C exhibited the size of 149.1 ± 1.34 nm with PDI score of 0.297 ± 0.0056 indicating a higher degree of uniformity of droplet size in the colloidal system, as shown in Figure 3. Moreover, the surface charge of the particles presents in the colloidal solution of ETB – C was recorded to be (-) 3.19 ± 0.04 mV suggesting that the reported ZP has higher degree of stability due to the fact as stated by Honary S et al., 2013[52] that particles showing ZP beyond the range of (±) 30 mV are less dispersed particles and get aggregated due to Van der Waal inter particle attraction forces. The following results are represented in Table 4.

FT-IR analysis

The FT-IR analysis represents the functional group regions identifying the various functional groups present on the surface of the particles corresponding to the fingerprint regions. The analysis of pure TTO [Figure 6], only ME [Figure 7], and TTO – ME [Figure 8] was done which reflected the significant peaks of terpenoid groups having monoterpenes, sesquiterpenes, diterpenes, etc., in the scan of pure TTO. They were not exhibited in the scan of the TTO.
ME suggesting that the above mentioned functional groups of TTO have been masked by the excipients and therefore, the signature peaks are not significantly visible, so we can conclude from the observation that these functional groups since not present in the outer surface may be encapsulated inside.

Table 4: Summarization of particle size, polydispersity index, and zeta potential of the optimized microemulsions ETB – C, as selected for further biological evaluation

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Particle size (PSA)</th>
<th>PDI</th>
<th>ZP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETE-C</td>
<td>149.1±1.34 nm</td>
<td>0.297±0.0056</td>
<td>(−) 3.19±0.04 mV</td>
</tr>
</tbody>
</table>

PDI: Polydispersity index, ZP: Zeta potential, PSA: Particle size analysis

Figure 2: Pseudoternary phase diagram indicating oil-in-water microemulsion using eucalyptus oil (oil), Tween 80 (surfactant), and ethanol (cosurfactant) with (a) S_{mix} ratio of 1:1 (eucalyptus oil + tween 80 + ethanol [ETE-A]), (b) S_{mix} ratio of 2:1 (ETE-B), (c) S_{mix} ratio of 3:1 (ETE-C), (d) S_{mix} ratio of 4:1 (ETE-D), (e) S_{mix} ratio of 5:1 (ETE-E), (f) S_{mix} ratio of 6:1 (ETE-F)

Figure 3: Graph representing the particle size analysis of the tea tree oil-microemulsion (eucalyptus oil + tween 80 + ethanol - C) by DLS method
FT-IR analysis of *M. alternifolia* shows the presence of Alkyne C-H bonds at 3451.708 cm\(^{-1}\). A peak having wave number 2951.529 cm\(^{-1}\) and 2923.074 cm\(^{-1}\) depicts the presence of sp\(^3\) C-H bond and an aldehyde group. Peaks’ ranging between 2100 and 1600 cm\(^{-1}\) indicates the presence of ester, aldehyde, ketone, carboxylic acid or amide functional groups. The peaks below 1600 cm\(^{-1}\) confirm the alkene double bonds and aromatic C-C bond. FT-IR analysis of ME and TTO-ME indicates that the functional groups present initially at TTO has been masked due to the presence of excipients and thus it can be concluded that there is no functional group present at the outer surface of the ME, and therefore, is encapsulated inside.

Physiological parameter evaluation

The various tested physiological parameters of optimized formulation of *M. alternifolia* loaded ME (ETE-C) showed the pH of 5.3 ± 0.83 which is closer to the pH of the skin which is between 5.5 and 6 depending on the type of the skin thus, determining the suitability of the mentioned formulation for transdermal application. Then, the density, viscosity, and conductivity of ETE-C were recorded as 182.7 ± 1.72 g/ml, 238 ± 2.67 cP, and 0.9845 ± 0.0083 mS/cm, respectively, suggesting the range of all the parameters closer to water, making it most suitable formulation to impregnate the dermal layer and reach to the inner layers through transcellular route. The formulation also showed the high optical transparency when measured with the polarimeter and the surface tension measurements showed the readings of 39.17 ± 1.46 dynes/cm, suggesting the prevalence of bicontinuous ME layer between oil and aqueous phase. The result of surface tension was in concordance with the viscosity and electric conductivity of ETE-C suggesting that due to the presence of alcohol group there is a presence of more aqueous phase on the outer core of the oil shell causing increased surface tension. Therefore, the pH, density, viscosity, and conductivity measurement of the selected combination (ETE-C) are shown in Table 5.

Statistical analysis

Table 5 shows the correlation coefficients (R) between PS and oil (O), PS and surfactant (S), PS and water (W) along with PDI with O, S, and W separately. All the correlation coefficients are significant at a 5% significance level \((P < 0.05)\). It can be observed that all the correlations are
Figure 6: Graph representing Fourier transform infrared analysis of tea tree oil

Figure 7: Graph representing Fourier transform infrared analysis of microemulsion

<table>
<thead>
<tr>
<th>Sample code</th>
<th>pH</th>
<th>Density (g/ml)</th>
<th>Viscosity (cP)</th>
<th>Conductivity (mS/cm)</th>
<th>Surface tension (dynes/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETE-C</td>
<td>5.3±0.83</td>
<td>182.7±1.72</td>
<td>238±2.67</td>
<td>0.9845±0.0083</td>
<td>39.17±1.46</td>
</tr>
</tbody>
</table>
Figure 8: Graph representing Fourier transform infrared analysis of tea tree oil-microemulsion (eucalyptus oil + tween 80 + ethanol - C)

Table 6: The statistical evaluation of different parameters of ETE – C was analyzed and their correlation coefficients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Oil (%) (O)</th>
<th>S_mix (%) (S)</th>
<th>Water (%) (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS (d.nm)</td>
<td>0.929</td>
<td>0.928</td>
<td>-0.928</td>
</tr>
<tr>
<td>PDI</td>
<td>-0.938</td>
<td>-0.938</td>
<td>0.939</td>
</tr>
</tbody>
</table>

PDI: Polydispersity index, PS: Particle size

Further, regression analysis is applied to establish the relationships between PS, O, S, W, and PDI, O, S, W. Tables 5-7 summarize the regression coefficients and ANOVA results. The regression models are significant at 51% levels for both PS and PDI (Table 8: \(P < 0.05\) and Table 5: \(P < 0.05\)).

The adjusted R\(^2\) values for PS and PDI are obtained as 0.955 and 0.332, respectively, which indicate that oil, S_mix and water can explain 95.5% variation in PS and 33.2% variation in PDI. The remaining amount of variations in both PS and PDI can be attributed to some other variables which are not considered in the experiment [Table 9].

The regression equations for PS [Table 8] and PDI [Table 10] are given by Equations 1 and 2, respectively.

\[
PS = -16056.10 + 346.88\text{(oil\%)} + 146.43\text{(S_mix\%)} + 156.77\text{(water\%)}
\]

\[
PDI = 94.14 - 0.94\text{(oil\%)} - 0.94\text{(S_mix\%)} - 0.92\text{(water \%)}
\]
In vitro permeability studies

In vitro compound permeability of test samples (TTO and TTO – ME) was assessed by passing them through the semi-permeable membrane to analyze and compare the release pattern of terpenoid group from the loaded TTO and TTO – ME by GC-MS. The maximum percentage release of terpen-4-ol was recorded as 91.5 ± 1.23% and 97.3 ± 2.17% for TTO and TTO-ME in 24 h [Figure 9], respectively. The pattern of compound release showed a linear diffusion profile of TTO-ME from the ME system with a consistent release rate throughout 24 h whereas, the release of only TTO showed a varying diffusion profile which reached its maximum release (91.5 ± 1.23%) in first 30 min after which the release rate decreased gradually and became constant after 8 h. However, the diffusion equilibrium in case of TTO-ME was attained after 8 h hence, making the formulation suitable for transdermal application.

Stability testing of TTO-ME (ETE-C)

Stability of TTO-ME (ETE-C) was examined after storing them at room temperature (37°C) for a year and testing the retention ability of their terpenoid content left after storing them for a mentioned time by the method of terpenoid estimating assay. The terpenoid analysis was done for the freshly prepared sample and the stored sample, and therefore it was concluded that there were no significant changes in the stored sample in comparison to the freshly prepared one which was about 84.9 ± 0.013% and 77.1 ± 0.15% for a freshly prepared sample and stored sample, respectively, whereas the stored sample of TTO for 1 year resulted in 80% reduction in the volume and terpenoid content since its highly volatile in nature. Therefore, summarization of compound loss percentage in TTO and TTO ME (ETE-C) is shown in Table 11.

CONCLUSION

In the present study, M. alternifolia loaded O/W ME system (ETE-C) was successfully developed so, as to combat with its therapeutic limitations of being highly volatile and initiating inflammatory responses at higher doses. After characterization, the results exhibited the average PS range between 32 and 160 nm and PDI score of 0.297 ± 0.0056 with thermodynamically stable ETC – C formulation. Furthermore, it showed the physicochemical parameters most suitable for the transdermal application with pH value of 5.3 ± 0.83, conductivity (0.98 ± 0.083 mS/cm), density (182.7 ± 1.72 g/ml), and viscosity (283 ± 2.67 cP) along with its surface tension of 39.17 ± 1.46 dynes/cm. Then, FT-IR result analysis revealed the masking of major signature peaks of TTO, suggesting their encapsulation in the lipophilic phase. Furthermore, the stability of the prepared formulation was also checked after 1 year, and there was no significant degradation reported in the same. Therefore, it can be concluded from the study that TTO loaded (ETE-C) ME system can be studied in various in vitro and in vivo models.

Table 11: Summarization of compound loss percentage in TTO and TTO ME (ETE-C)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of the sample</th>
<th>Amount present before storage (µl)</th>
<th>Amount present after storage (µl)</th>
<th>Calculated percentage loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>TTO</td>
<td>0.87±0.002</td>
<td>0.075±0.011</td>
<td>79.5±0.009</td>
</tr>
<tr>
<td>2.</td>
<td>TTOME (ETE-C)</td>
<td>0.849±0.013</td>
<td>0.771±0.15</td>
<td>7.8±0.16</td>
</tr>
</tbody>
</table>

TTO: Tea tree oil, ME: Microemulsion
further to establish its better therapeutic efficacy for various skin disorders.

ACKNOWLEDGMENT

The researchers are thankful to the Department of Biotechnology and Bioinformatics, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, for providing all the necessary facilities to execute this work. Furthermore, they are grateful to SMITHA lab (IIT Delhi), SAIF (Punjab University, Chandigarh), and EO Association of India, Noida, Uttar Pradesh, for their specialized analytical facilities for the successful completion of this research work.

REFERENCES

10. Tighe S, Gao YY, Tseng SC. Terpinen-4-ol is the most active ingredient of tea tree oil to kill Demodex mites. Transl Vis Sci Technol 2013;2:2.
Pant, et al.: M Alternifolia microemulsion for transdermal application

44. Venugopal V. Formulation and characterization of tea tree oil loaded ethosomes. Indones J Pharm 2017;27:44.

Source of Support: Nil. Conflict of Interest: None declared.