An overview of size reduction technologies in the field of pharmaceutical manufacturing
Main Article Content
Abstract
atmosphere, temperature control, sonocrystallization, supercritical fluid process. etc. Moreover, some advance technologies of size reduction including Micron Technologies, Gran-U-LizerTM Technology, Jet-O-MizerTM and Microfluidics® have
been popular. Various application of size reduction concept covers oral delivery of poorly soluble drugs, micronization, nanotechnology (micro- and nano suspensions), etc.This systemic review highlights advantages and disadvantages, mechanisms, theories, techniques, advances, and pharmaceutical applications of size reduction technology.
Downloads
Article Details
This is an Open Access article distributed under the terms of the Attribution-Noncommercial 4.0 International License [CC BY-NC 4.0], which requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, for noncommercial purposes only.
References
Abouzeid AZ. Processing of fine particles in mineral beneficiation. Part
Powder Handling and Processing 1994;6:35-48.
Price M. Size reduction. In: Othmer K, editor. Encyclopedia of chemical
technology. New York: John Wiley and Sons; 1999. p. 836-8.
Rudd DF, Powers GJ, Siirola JJ. ‘Process synthesis’. Englewood Cliffs,
N.J.: Prentice-Hall; 1973, 205-208,
Subramanyam CV. ‘Size reduction’. In: Pharmaceutical Engineering. 1st
ed. Vallabh Prakashan; 2004. p. 144-76.
Jani GK. ‘Size Reduction’. In: Pharmaceutical Engineering-II. 2nd ed.
B.S. Shah Prakashan; 2005. p. 1-30.
Parrot EL. ‘Milling’ In: Lachman L, editor. The Theory and practice of
Industrial Pharmacy. 3rd ed. Varghese Publisher Housing; 1990. p.
-46.
Parrot EL. ‘Size Reduction’. In: Swwbrick J, Boyalan JC, editors.
‘Encyclopedia of Pharmaceutical Technology’. New York: Marcel Dekker
Inc; 1998. p. 101-20.
O’Connor RE, Schwartz JB, ‘Powder’. In: Gennaro AR, editor. Remington:
The science and practice of pharmacy. USA: Lippincott Williams and
Wilkins; 2001. p. 681-99.
Staniforth J. ‘Size Reduction’. In: Aulton ME, editor. The Science of
Dosage Form Design. London: Churchill Livingstone; 2nd ed. 2005. p.
-73.
Cooper and Gun. ‘Size Reduction’. In: Carter SJ, editor. Tutorial
Pharmacy. 6th ed. 2000. p. 183-91.
Bond FC. Chemical Engineering. 1952. p. 59-169.
Snow RH, Kaye BH, Capes CE, Srety GC. ‘Size reduction and size
enlargement’. In: Perry RH, Green D, editors. Chemical Engineers
Handbook. McGraw Hill International; 1963. p. 1-72.
Othmer K. Encyclopedia of chemical technology. New York: John Wiley
and Sons; 2002. p. 18,336.
Berry CE. Modern machines for dry size reduction in fine size range.
Indian Eng Chem 1946;38:672.
Banga S, Chawla G, Bansal AK. New trends in the crystallisation of
active pharmaceutical ingredients, Business briefing. Pharmagenerics
;6:70-4.
Crystallization process using ultrasound. United States Patent
Kakumanu VK, Bansal AK. Supercritical fluid technology in
pharmaceutical research. Businessbriefing: Labtech; 2004. p. 71-3.
Pasquali I, Bettini R, Giordano F. Solid-state chemistry and particle
engineering with supercritical fluids in pharmaceutics. Eur J Pharm Sci
;27:299-310.
Karanth H, Shenoy VS, Murthy RR. Industrially feasible alternative
approaches in the manufacture of solid dispersions: A technical report.
AAPS PharmSciTech 2006;7:87.
Spray drying From Wikipedia, the free encyclopedia. Available from:
http://en.wikipedia.org. 08/03/2008.
Kawashima Y, Saito M, Takenaka H. Improvement of solubility and
dissolution rate of poorly water-soluble salicylic acid by a spray-drying
technique. J Pharm Pharmacol 1975;27:1-5.
Shinde AJ. Solubilization of poorly soluble drugs: A review. Available
from: http://www.pharmainfo.net/reviews/solubilization-poorly-soluble-
drugs-review. 11/05/2008.
Micronization, Micron Technologies, Kent United Kingdom. Available
from: http://www.microntech.com/micron/index.html. 14/04/2008.
Gran-U-LizerTM Technology, Modern Process Equipment Corporation,
Chicago, llinois 60623 U.S.A. Available from: http://www.mpechicago.
com/pharm/. 08/04/2008.
Jet-O-MizerTM Technology, Fluid Energy Processing and Equipment
Company, Telford, PA 18969. Available from: http://www.fluidenergype.
com/lit.htm. 12/04/2008.
Microfluidics. Available from: http://www.microfluidicscorp.com/index.
php?option=com_contentandtask=viewandid=20andItemid=39.
/04/2008.
Verheezen JJ, van der Voort Maarschalk K, Faassen F, Vromans H. Milling
of agglomerates in an impact mill. Int J Pharm 2004;278:165-72.
Airaksinen S, Antikainen O, Rantanen J, Yliruusi J. Advanced testing of
granule friability determined from size reduction data. Drugs Made in
Germany 2000;43:96-9.
Mishra BK, Thornton C. Impact breakage of particle agglomerates. Int
J Miner Process 2001;61:225-39.
Narayanan S. ‘Single particle breakage tests: A review of principles
and applications to commination modeling’. Bull Proc AIMM
;291(4):49-58.
Vogel L, Peukert W. Characterization of grinding relevant particle
properties by inverting a population balance model. 2002;19:149-57.
Hite M, Turner S. Oral Delivery of Poorly Soluble Drugs 400,
Pharmaceutical Manufacturing and Packing Source Summer ’03 issue.
Samedan Ltd; 2003.
Larran JM. Micronisation of pharmaceutical powders for use in
inhalation. Pharmaceutical Manufacturing and Packing. Sourcer
Spring’05 Issue, 2005.
Young L. Stable micro systems, Handling the powder flow problem.
Available from: http://www.pharma-mag.com. March 2007.
Tservistas M, Levy MS, Lo-Yim MY, O'Kennedy RD, York P, Humphrey GO,
et al. The formation of plasmid dna loaded pharmaceutical powders
using supercritical fluid technology. Biotechnol Bioeng 2001;72:12-8.
Tservistas M, Scheper T, Freitag R. Supercritical fluid extraction
(SFE)-Novel strategies in the processing of biomaterials. In: Grabley
S, Thiericke R, editors. Drug discovery from nature. Berlin: Springer
Verlag; 1999. p. 106-13.
Sarkari M, Darrat I, Knutson BL. Generation of microparticles using
CO2 and CO2 -Philic Antisolvents. Am Inst Chem Eng J (AIChE)
;46:1850-9.
Kipp JE. The role of solid nanoparticle technology in the parenteral
delivery of poorly water-soluble drugs. Int J Pharm 2004;284:109-22.
Violante MR, Fischer HW. Method for making uniformly sized particles
from water-insoluble organic compounds. 1989, US Patent 4,826,689
(May 2).
Chattopadhyay P, Gupta RB. Protein nanoparticles formation by
supercritical antisolvent with enhanced mass transfer. Am Inst Chem
Eng J (AIChE) 2002;48:235-44.
Nanosuspension drug delivery Technology and application - Nanotech -
Express Pharma Pulse. Available from: http://www.expresspharmapulse.
com. 24/02/2005.
Aulton ME. Pharmaceutics, The science of dosage form design. 2nd ed.
London: Churchill Livingstone; 2002. p. 113-38, 234-52.
Pinnamaneni S, Das NG, Das SK. Formulation approaches for orally
administered poorly soluble drugs. Pharmazie 2002;57:291-300.